• Title/Summary/Keyword: chaperone proteins

Search Result 121, Processing Time 0.024 seconds

Molecular chaperone as a sophisticated intracellular membership (세포내인자로서의 정교한 기능을 하는 molecular chaperone)

  • 권오유;송민호
    • Journal of Life Science
    • /
    • v.8 no.2
    • /
    • pp.223-233
    • /
    • 1998
  • Discovery of molecular chaperone has stimulate cell biologists and thus made it possible to re-examine the processes whereby proteins achieve and maintain their functional conformations within living cells. the term ‘Molecular chaperone’ was first coined to describe one particular protein involved in the assembly of nucleosomes, but the term has now been extended to describe the function of a wide variety of proteins that assist protein transport across membranes, folding of nascent polypeptide, the assembly and disassembly of oligomeric structures, and the recovery or removal of proteins damaged by various environmental stresses including heat shock. Progress of molecular chaperone research is still limited by the lack of 3-dimensional structural information and detailed interacts with taget proteins in the cell. However, several laboratories around the world are attempting to extend our knowledge on the functions of molecular chaperone, and such efforts seem justified to finally provide the answers to the most burning questions shortly.

  • PDF

Molecular chaperone as a sophisticated intracellular membership (세포내인자로서의 정교한 기능을 하는 molecular chaperone)

  • 권오유;송민호
    • Journal of Life Science
    • /
    • v.8 no.2
    • /
    • pp.226-226
    • /
    • 1998
  • Discovery of molecular chaperone has stimulate cell biologists and thus made it possible to re-examine the processes whereby proteins achieve and maintain their functional conformations within living cells. the term ‘Molecular chaperone’ was first coined to describe one particular protein involved in the assembly of nucleosomes, but the term has now been extended to describe the function of a wide variety of proteins that assist protein transport across membranes, folding of nascent polypeptide, the assembly and disassembly of oligomeric structures, and the recovery or removal of proteins damaged by various environmental stresses including heat shock. Progress of molecular chaperone research is still limited by the lack of 3-dimensional structural information and detailed interacts with taget proteins in the cell. However, several laboratories around the world are attempting to extend our knowledge on the functions of molecular chaperone, and such efforts seem justified to finally provide the answers to the most burning questions shortly.

The Hsp90 chaperone machinery: from structure to drug development

  • Hahn, Ji-Sook
    • BMB Reports
    • /
    • v.42 no.10
    • /
    • pp.623-630
    • /
    • 2009
  • Hsp90, an evolutionarily conserved molecular chaperone, is involved in the folding, stabilization, activation, and assembly of a wide range of 'client' proteins, thus playing a central role in many biological processes. Especially, several oncoproteins act as Hsp90 client proteins and tumor cells require higher Hsp90 activity than normal cells to maintain their malignancy. For this reason, Hsp90 has emerged as a promising target for anti-cancer drug development. It is still largely unknown how Hsp90 can recognize structurally unrelated client proteins. However, recent progress in structural studies on Hsp90 and its interaction with various co-chaperones has broadened our knowledge of how the Hsp90 ATPase activity, which is essential for its chaperone function, is regulated and coupled with the conformational changes of Hsp90 dimer. This review focuses on the roles of various Hsp90 co-chaperones in the regulation of the Hsp90 ATPase cycle, as well as in the selection of client proteins. In addition, the current development of Hsp90 inhibitors based on the structural information will be discussed.

Structure and Function of HtrA Family Proteins, the Key Players in Protein Quality Control

  • Kim, Dong-Young;Kim, Kyeong-Kyu
    • BMB Reports
    • /
    • v.38 no.3
    • /
    • pp.266-274
    • /
    • 2005
  • High temperature requirement A (HtrA) and its homologues constitute the HtrA familiy proteins, a group of heat shock-induced serine proteases. Bacterial HtrA proteins perform crucial functions with regard to protein quality control in the periplasmic space, functioning as both molecular chaperones and proteases. In contrast to other bacterial quality control proteins, including ClpXP, ClpAP, and HslUV, HtrA proteins contain no regulatory components or ATP binding domains. Thus, they are commonly referred to as ATP-independent chaperone proteases. Whereas the function of ATP-dependent chaperone-proteases is regulated by ATP hydrolysis, HtrA exhibits a PDZ domain and a temperature-dependent switch mechanism, which effects the change in its function from molecular chaperone to protease. This mechanism is also related to substrate recognition and the fine control of its function. Structural and biochemical analyses of the three HtrA proteins, DegP, DegQ, and DegS, have provided us with clues as to the functional regulation of HtrA proteins, as well as their roles in protein quality control at atomic scales. The objective of this brief review is to discuss some of the recent studies which have been conducted regarding the structure and function of these HtrA proteins, and to compare their roles in the context of protein quality control.

Aspartyl aminopeptidase of Schizosaccharomyces pombe has a molecular chaperone function

  • Lee, Song-Mi;Kim, Ji-Sun;Yun, Chul-Ho;Chae, Ho-Zoon;Kim, Kang-Hwa
    • BMB Reports
    • /
    • v.42 no.12
    • /
    • pp.812-816
    • /
    • 2009
  • To screen chaperone proteins from Schizosaccharomyce pombe (S. pombe), we prepared recombinant citrate synthase of the fission yeast as a substrate of anti-aggregation assay. Purified recombinant citrate synthase showed citrate synthase activity and was suitable for the substrate of chaperone assay. Several heat stable proteins including aspartyl aminopeptidase (AAP) for candidates of chaperone were screened from the supernatant fraction of heat-treated crude extract of S. pombe. The purified AAP migrated as a single band of 47 kDa on SDS-polyacrylamide gel electrophoresis. The native size of AAP was estimated as 200 kDa by a HPLC gel permeation chromatography. This enzyme can remove the aspartyl residue at N-terminus of angiotensin I. In addition, AAP showed the heat stability and protected the aggregation of citrate synthase caused by thermal denaturation. This study showed that S. pombe AAP is a moonlight protein that has aspartyl aminopeptidase and chaperone activities.

Functional switching of eukaryotic 2-Cys peroxiredoxins from peroxidases to molecular chaperones in response to oxidative stress

  • Jang, Ho-Hee;Lee, Sang-Yeol
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2005.11a
    • /
    • pp.40-64
    • /
    • 2005
  • Much biochemical information on peroxiredoxins (Prxs) has been reported but a genuine physiological function for these proteins has not been established. We show here that two cytosolic yeast Prxs, cPrxI and II, exist in a variety of forms that differ in their structure and molecular weight (MW) and that they can act both as a peroxidase and as a molecular chaperone. The peroxidase function predominates in the lower MW proteins, whereas the chaperone function is more significant in the higher MW complexes. Oxidative stress and heat shock exposure of yeasts causesthe protein structures of cPrxI and II to shift from low MW species to high MW complexes. This triggers a peroxidase-to-chaperone functional switch. These in vivo changes are primarily guided by the active peroxidase site residue, $Cys^{47}$, which serves as an efficient $'H_2O_2-sensor'$ in the cells. The chaperone function of the proteins enhances yeast resistance to heat shock.

  • PDF

Screening Molecular Chaperones Similar to Small Heat Shock Proteins in Schizosaccharomyces pombe

  • Han, Jiyoung;Kim, Kanghwa;Lee, Songmi
    • Mycobiology
    • /
    • v.43 no.3
    • /
    • pp.272-279
    • /
    • 2015
  • To screen molecular chaperones similar to small heat shock proteins (sHsps), but without ${\alpha}$-crystalline domain, heat-stable proteins from Schizosaccharomyces pombe were analyzed by 2-dimensional electrophoresis and matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Sixteen proteins were identified, and four recombinant proteins, including cofilin, NTF2, pyridoxin biosynthesis protein (Snz1) and Wos2 that has an ${\alpha}$-crystalline domain, were purified. Among these proteins, only Snz1 showed the anti-aggregation activity against thermal denaturation of citrate synthase. However, pre-heating of NTF2 and Wos2 at $70^{\circ}C$ for 30 min, efficiently prevented thermal aggregation of citrate synthase. These results indicate that Snz1 and NTF2 possess molecular chaperone activity similar to sHsps, even though there is no ${\alpha}$-crystalline domain in their sequences.

Proteomic Analysis of Protein Changes in Human Lung Cancer Epithelial Cells Following Streptococcus pneumoniae Infection (Streptococcus pneumonia 감염으로 변화한 사람 폐 상피세포 단백질의 프로테오믹 분석)

  • Lee, Yun Yeong;Chung, Kyung Tae
    • Journal of Life Science
    • /
    • v.23 no.8
    • /
    • pp.1050-1056
    • /
    • 2013
  • Streptococcus pneumoniae is the leading cause of community-acquired pneumonia throughout the world. The bacteria invade through lung tissue and cause sepsis, shock, and serious sequelae, including rheumatic fever and acute glomerulonephritis. However, the molecular mechanism associated with pneumonia's penetration of lung tissue and invasion of the blood stream are still unclear. We attempted to investigate the host cell response at protein levels to S. pneumoniae D39 invasion using human lung cancer epithelial cells, A549. Streptococcus pneumoniae D39 began to change the morphology of A549 cells to become round with filopodia at 2 hours post-infection. A549 cell proteins obtained at each infection time point were separated by SDS-PAGE and analyzed using MALDI-TOF. We identified several endoplasmic reticulum (ER) resident proteins such as Grp94 and Grp78 and mitochondrial proteins such as ATP synthase and Hsp60 that increased after S. pneumoniae D39 infection. Cytosolic Hsc70 and Hsp90 were, however, identified to decrease. These proteins were also confirmed by Western blot analysis. The identified ER resident proteins were known to be induced during ER stress signaling. These/ data, therefore, suggest that S. pneumoniae D39 infection may induce ER stress.

A Cytosolic Thioredoxin Acts as a Molecular Chaperone for Peroxisome Matrix Proteins as Well as Antioxidant in Peroxisome

  • Du, Hui;Kim, Sunghan;Hur, Yoon-Sun;Lee, Myung-Sok;Lee, Suk-Ha;Cheon, Choong-Ill
    • Molecules and Cells
    • /
    • v.38 no.2
    • /
    • pp.187-194
    • /
    • 2015
  • Thioredoxin (TRX) is a disulfide reductase present ubiquitously in all taxa and plays an important role as a regulator of cellular redox state. Recently, a redox-independent, chaperone function has also been reported for some thioredoxins. We previously identified nodulin-35, the subunit of soybean uricase, as an interacting target of a cytosolic soybean thioredoxin, GmTRX. Here we report the further characterization of the interaction, which turns out to be independent of the disulfide reductase function and results in the co-localization of GmTRX and nodulin-35 in peroxisomes, suggesting a possible function of GmTRX in peroxisomes. In addition, the chaperone function of GmTRX was demonstrated in in vitro molecular chaperone activity assays including the thermal denaturation assay and malate dehydrogenase aggregation assay. Our results demonstrate that the target of GmTRX is not only confined to the nodulin-35, but many other peroxisomal proteins, including catalase (AtCAT), transthyretin-like protein 1 (AtTTL1), and acyl-coenzyme A oxidase 4 (AtACX4), also interact with the GmTRX. Together with an increased uricase activity of nodulin-35 and reduced ROS accumulation observed in the presence of GmTRX in our results, especially under heat shock and oxidative stress conditions, it appears that GmTRX represents a novel thioredoxin that is co-localized to the peroxisomes, possibly providing functional integrity to peroxisomal proteins.

Expression and Purification of Unstructured Protein, IMUP-1, using Chaperone Co-expression System for NMR Study

  • Yi, Jong-Jae;Yoo, Jung Ki;Kim, Jin Kyeoung;Son, Woo Sung
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.17 no.1
    • /
    • pp.30-39
    • /
    • 2013
  • Immortalization-upregulated protein-1 (IMUP-1) genes have been cloned and are known to be involved in SV40-mediated immortalization. IMUP-1 gene is highly expressed in various cancer cell lines and tumors, suggesting the possibility that they might be involved in tumorigenicity. Previously, there were several problems for overexpression of IMUP-1 in bacterial expression systems including low solubility and aggregation due to unstructured property. To investigate the structural properties, it is necessary to obtain lots of pure and soluble proteins. Accordingly, the co-expression systems of bacterial chaperone proteins, GroEL-GroES, were used to increase solubility of IMUP-1. From the analysis of NMR and CD experiment data, it is suggested that the protein adopt typical the random coil properties in solution.