References
-
Ades, S. E., Connolly, L. E., Alba, B. M. and Gross, C. A. (1999) The Escherichia coli
$\sigma$ (E)-dependent extracytoplasmic stress response is controlled by the regulated proteolysis of an anti-s factor. Genes Dev. 13, 2449-2461 https://doi.org/10.1101/gad.13.18.2449 - Alba, B. M. and Gross, C. A. (2004) Regulation of the Escherichia coli sE-dependent envelope stress response. Mol. Microbiol. 52, 613-619 https://doi.org/10.1111/j.1365-2958.2003.03982.x
- Alba, B. M., Leeds, J. A., Onufryk, C., Lu, C. Z. and Gross, C. A. (2002) DegS and YaeL participate sequentially in the cleavage of RseA to activate the sigma(E)-dependent extracytoplasmic stress response. Genes Dev. 16, 2156-2168 https://doi.org/10.1101/gad.1008902
-
Alba, B. M., Zhong, H. J., Pelayo, J. C. and Gross, C. A. (2001) degS (hhoB) is an essential Escherichia coli gene whose indispensable function is to provide
$\sigma$ (E) activity. Mol. Microbiol. 40, 1323-1333 https://doi.org/10.1046/j.1365-2958.2001.02475.x - Bakker, D., Vader, C. E., Roosendaal, B., Mooi, F. R., Oudega, B. and de Graaf, F. K. (1991) Structure and function of periplasmic chaperone-like proteins involved in the biosynthesis of K88 and K99 fimbriae in enterotoxigenic Escherichia coli. Mol. Microbiol. 5, 875-886 https://doi.org/10.1111/j.1365-2958.1991.tb00761.x
- Bass, S., Gu, Q. and Christin A. (1996) Multicopy suppressors of prc mutant Escherichia coli two HtrA (DegP) protease homologus (HhoAB), DksA, and a truncated R1pA. J. Bacteriol. 178, 1154-1161
- Baumler, A. J., Kusters, J. G., Stojiljkovic, I. and Heffron, F (1994) Salmonella typhimurium loci involved in survival within macrophages. Infect. Immun. 62, 1623-1630
- Cavard, C., Lazdunski, C. and Howard, S. P. (1989) The acylated precursor form of the colicin A lysis protein is a natural substrate of the DegP protease. J. Bacteriol. 171, 6316-6322
- Doyle, D. A., Lee, A., Lewis, J., Kim, E., Sheng, M. and Mackinno, R. (1996) Crystal structures of a complexed and peptide-free membrane protein-binding domain: Molecular basis of peptide recognition by PDZ. Cell 85, 1067-1076 https://doi.org/10.1016/S0092-8674(00)81307-0
- Elzer, P. H., Phillips, R. W., Robertson, G. T. and Roop II, R. M. (1996) The HtrA stress response protease contributes to resistance of Brucella abortus to killing by murine phagocytes. Infect. Immun. 64, 4838-4841
- Farn, J. and Roberts, M. (2004) Effect of inactivation of the HtrAlike serine protease DegQ on the virulence of Salmonella enterica serovar Typhimurium in mice. Infect Immun. 72, 7357- 7359 https://doi.org/10.1128/IAI.72.12.7357-7359.2004
- Gottesman, S. (2003) Proteolysis in bacterial regulatory circuits. Annu. Rev. Cell Dev. Biol. 19, 565-587 https://doi.org/10.1146/annurev.cellbio.19.110701.153228
- Gottesman, S., Wickner, S. and Maurizi, M. R. (1997) Protein quality control : triage by chaperone and proteases. Genes Dev. 11, 815-823 https://doi.org/10.1101/gad.11.7.815
- Harris, B. Z. and Lim, W. A. (2001) Mechanism and role of PDZ domains in signaling complex assembly. J. Cell Sci. 114, 3219- 3231
- Jones, C. H., Bolken, T. C., Jones, K. F., Zeller, G. O. and Hruby, D. E. (2001) Conserved DegP protease in gram-positive bacteria is essential for thermal and oxidative torlerance and full virulence in Streptococcus pyogenes. Infect. Immun. 69, 5538-5545 https://doi.org/10.1128/IAI.69.9.5538-5545.2001
- Jones, C. H., Dexter, P., Evans, A. K., Liu, C., Hultgren, S. J. and Hruby, D. E. (2002) Escherichia coli DegP protease cleaves between paired hydrophobic residues in a natural substrate: the PapA pilin. J. Bacteriol. 184, 5762-5771 https://doi.org/10.1128/JB.184.20.5762-5771.2002
- Kanehara, K., Ito, K. and Akiyama, Y. (2002) YaeL (EcfE) activates the sigma(E) pathway of stress response through a site-2 cleavage of anti-sigma(E), RseA. Genes Dev. 16, 2147- 2155 https://doi.org/10.1101/gad.1002302
- Kim, D. Y., Kim, D. R., Ha, S. C., Lokanath, N. K., Lee, C. J., Hwang, H. Y. and Kim, K. K. (2003) Crystal structure of the protease domain of a heat shock protein HtrA from Thermotoga maritime. J. Biol. Chem. 278, 6543-6551 https://doi.org/10.1074/jbc.M208148200
- Kim, D. Y. and Kim, K. K. (2002) Crystallization and preliminary X-ray studies of the protease domain of the heat-shock protein HtrA from Thermotoga maritima. Acta Crystallogr D Biol Crystallogr. 58, 170-172 https://doi.org/10.1107/S0907444901018248
- Kim, K. I., Park, S. C., Kang, S. H., Cheong, G. W. and Chung, C. H. (1999) Selective degradation of unfolded proteins by the self-compartmentalizing HtrA protease, a periplasmic heat shock protein in Escherichia coli. J. Mol. Biol. 294, 1363- 1374 https://doi.org/10.1006/jmbi.1999.3320
- Kolmar, H., Waller, P. R. and Sauer, R. T. (1996) The DegP and DegQ periplasmic endoproteases of Escherichia coli: specificity for cleavage sites and substrate conformation. J. Bacteriol. 178, 5925-5929
- Kraulis, P. J. (1991) Molscript. J. Appl. Crystallogr. 24, 946-950 https://doi.org/10.1107/S0021889891004399
- Krojer, T., Garrido-Franco, M., Huber, R., Ehrmann, M. and Clausen, T. (2002) Crystal structure of DegP (HtrA) reveals a new protease-chaperone machine. Nature 416, 455-459 https://doi.org/10.1038/416455a
- Li, S. R., Dorrell, N., Everest, P. H., Dougan, G. and Wren, B. W. (1996) Construction and characterization of a Yersinia enterocolitica O:8 high-temperature requirement (htrA) isogenic mutant. Infect. Immun. 64, 2088-2094
- Li, W., Srinivasula, S. M., Chai, J., Li, P., Wu, J. -W., Zhang, Z., Alnemri, E. S. and Shi, Y. (2002) Structural insights into the pro-apoptotic function of mitochondrial serine protease HtrA2/ Omi. Nat. Struct. Biol. 9, 436-441 https://doi.org/10.1038/nsb795
- Lipinska, B., Sharma, S. and Georgopoulos, C. (1988) Sequence analysis and regulation of the htrA gene of Escherichia coli: a sigma 32-independent mechanism of heat-inducible transcription. Nucleic Acids Res. 16, 10053-10067 https://doi.org/10.1093/nar/16.21.10053
- Lipinska, B., Zylicz, M. and Georgopoulos, C. (1990) The HtrA (DegP) protein, essential for Escherichia coli survival at high temperatures, is an endopeptidase, J. Bacteriol. 172, 1791- 1797
- Pallen, M. J. and Ponting, C. P. (1997) PDZ domains in bacterial proteins. Mol. Microbiol. 26, 411-413 https://doi.org/10.1046/j.1365-2958.1997.5591911.x
- Pallen, M. J. and Wren, B. W. (1997) The HtrA family of serine proteases. Mol. Microbiol. 26, 209-221 https://doi.org/10.1046/j.1365-2958.1997.5601928.x
- Ponting, C. P. (1997) Evidence for PDZ domains in bacteria, yeast, and plants. Protein sci. 6, 464-468 https://doi.org/10.1002/pro.5560060225
- Poquet, I., Saint, V., Seznec, E., Simoes, N., Bolotin, A. and Gruss, A. (2000) HtrA is the unique surface housekeeping protease in Lactococcus lactis and is required for natural protein processing. Mol. Microbiol. 35, 1042-1051 https://doi.org/10.1046/j.1365-2958.2000.01757.x
- Raivio, T., and Silhavy, T. (2001) Periplasmic stress and ECF sigma factors. Annu. Rev. Microbiol. 55, 591-624 https://doi.org/10.1146/annurev.micro.55.1.591
- Skorko-Glonek, J., Krzewski, K., Lipinska, B., Bertoil, E. and Tanfani, F. (1995) comparison of the structure of wild-type HtrA heat shock protease and mutant HtrA proteins. A Fourier transform infrared spectroscopic study. J. Biol. Chem. 270, 11140-11146 https://doi.org/10.1074/jbc.270.19.11140
- Songyang, Z., Fanning, A. S., Fu, C., Xu, J., Marfatia, S. M., Chishti, A. H., Crompton, A., Chan, A. C., Anderson, J. M. and Cantley, L. C. (1997) Recognition of unique carboxylterminal motifs by distinct PDZ domains. Science 275, 73-77 https://doi.org/10.1126/science.275.5296.73
- Spiers, A., Lamb, H. K., Cocklin, S., Wheeler, K. A., Budworth, J., Dodds, A. L., Pallen, M. J., Maskell, D. J., Charles, I. G. and Hawkins, A. R. (2002) PDZ domains facilitate binding of high temperature requirement protease A (HtrA) and tailspecific protease (Tsp) to heterologous substrates through recognition of the small stable RNA A (ssrA)-encoded peptide. J. Biol. Chem. 277, 39443-39449 https://doi.org/10.1074/jbc.M202790200
- Spiess, C., Beil, A. and Ehrmann, M. (1999) A temperaturedependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 97, 229-347
- Strauch, K. L. and Beckwith, J. (1988) An Escherichia coli mutation preventing degradation of abnormal periplasmic proteins. Proc. Natl. Acad. Sci. USA 85, 1576-1580 https://doi.org/10.1073/pnas.85.5.1576
- Swamy, K. H., Chung, C. H. and Goldberg, A. L. (1983) Isolation and characterization of protease do from Escherichia coli, a large serine protease containing multiple subunits. Arch. Biochem. Biophys. 224, 543-554 https://doi.org/10.1016/0003-9861(83)90242-4
- Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680 https://doi.org/10.1093/nar/22.22.4673
- Waller, P. R. and Sauer, R. T. (1996) Characterization of degQ and degS, Escherichia coli genes encoding homologs of the DegP Protease. J. Bacteriol. 178, 1146-1153
- Walsh, N. P., Alba, B. M., Bose, B., Gross, C. A. and Sauer, R. T. (2003) OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain. Cell 113, 61-71 https://doi.org/10.1016/S0092-8674(03)00203-4
- Wickner, S., Maurizi, M. R. and Gottesman, S. (1999) Posttranslational quality control: folding, refolding, and degrading proteins. Science 286, 1888-1893 https://doi.org/10.1126/science.286.5446.1888
- Wilken, C., Kitzing, K., Kurzbauer, R., Ehrmann, M. and Clausen, T. (2004) Crystal structure of the DegS stress sensor: How a PDZ domain recognizes misfolded protein and activates a protease. Cell 117, 483-494 https://doi.org/10.1016/S0092-8674(04)00454-4
- Wonderling, L. D., Wilkinson, B. J. and Bayles, D. O. (2004) The htrA(degP) gene of Listeria monocytogenes 10403S is essential for optimal growth under stress conditions. Appl. Environ. Microbiol. 70, 1935-1943 https://doi.org/10.1128/AEM.70.4.1935-1943.2004
- Wootton, J. C. and Drummond, M. H. (1989) The Q-linker - a class of interdomain sequences found in bacterial multidomain regulatory proteins. Protein Eng. 2, 535-543 https://doi.org/10.1093/protein/2.7.535
- Yorgey, P., Rahme, L. G., Tan, M. W. and Ausubel, F. M. (2001) The roles of mucD and alginatae in the virulence of Pseudomonas aeruginosa in plants, nematodes and mice. Mol. Microbiol. 41, 1063-1076 https://doi.org/10.1046/j.1365-2958.2001.02580.x
Cited by
- Botrytis cinerea BcNma is involved in apoptotic cell death but not in stress adaptation vol.48, pp.6, 2011, https://doi.org/10.1016/j.fgb.2011.01.007
- Campylobacter jejuniserine protease HtrA plays an important role in heat tolerance, oxygen resistance, host cell adhesion, invasion, and transmigration vol.5, pp.1, 2015, https://doi.org/10.1556/EuJMI-D-15-00003
- Periplasmic Proteins of the ExtremophileAcidithiobacillus ferrooxidans vol.6, pp.12, 2007, https://doi.org/10.1074/mcp.M700042-MCP200
- Newly folded substrates inside the molecular cage of the HtrA chaperone DegQ vol.19, pp.2, 2012, https://doi.org/10.1038/nsmb.2210
- Using the SUBcellular database for Arabidopsis proteins to localize the Deg protease family vol.5, 2014, https://doi.org/10.3389/fpls.2014.00396
- Activation of HtrA2, a Mitochondrial Serine Protease Mediates Apoptosis: Current Knowledge on HtrA2 Mediated Myocardial Ischemia/Reperfusion Injury vol.26, pp.3, 2008, https://doi.org/10.1111/j.1755-5922.2008.00052.x
- The Mechanism of Temperature-Induced Bacterial HtrA Activation vol.377, pp.2, 2008, https://doi.org/10.1016/j.jmb.2007.12.078
- A gel-free quantitative proteomics approach to investigate temperature adaptation of the food-borne pathogen Cronobacter turicensis 3032 vol.10, pp.18, 2010, https://doi.org/10.1002/pmic.200900460
- Susceptibility of germ-free pigs to challenge with protease mutants of Salmonella enterica serovar Typhimurium vol.212, pp.7, 2007, https://doi.org/10.1016/j.imbio.2007.05.001
- Relapsing fever spirochaetes produce a serine protease that provides resistance to oxidative stress and killing by neutrophils vol.60, pp.3, 2006, https://doi.org/10.1111/j.1365-2958.2006.05122.x
- Global gene expression mediated by Thermus thermophilus SdrP, a CRP/FNR family transcriptional regulator vol.70, pp.1, 2008, https://doi.org/10.1111/j.1365-2958.2008.06388.x
- Molecular engineering of secretory machinery components for high-level secretion of proteins in Bacillus species vol.41, pp.11, 2014, https://doi.org/10.1007/s10295-014-1506-4
- High-energy water sites determine peptide binding affinity and specificity of PDZ domains vol.18, pp.8, 2009, https://doi.org/10.1002/pro.177
- Rapid characterization of the binding property of HtrA2/Omi PDZ domain by validation screening of PDZ ligand library vol.50, pp.3, 2007, https://doi.org/10.1007/s11427-007-0037-x
- Lyme disease spirochaetes possess an aggrecan-binding protease with aggrecanase activity 2013, https://doi.org/10.1111/mmi.12276
- The Legionella HtrA homologue DegQ is a self-compartmentizing protease that forms large 12-meric assemblies vol.108, pp.26, 2011, https://doi.org/10.1073/pnas.1101084108
- Virulence factors of theMycobacterium tuberculosiscomplex vol.4, pp.1, 2013, https://doi.org/10.4161/viru.22329
- Examination of post-transcriptional regulations in prokaryotes by integrative biology vol.332, pp.11, 2009, https://doi.org/10.1016/j.crvi.2009.09.005
- Prospective onMycobacterium tuberculosisProteomics vol.11, pp.1, 2012, https://doi.org/10.1021/pr2008658
- Production, secretion and purification of a correctly folded staphylococcal antigen in Lactococcus lactis vol.14, pp.1, 2015, https://doi.org/10.1186/s12934-015-0271-z
- Insights into the Cyanobacterial Deg/HtrA Proteases vol.7, 2016, https://doi.org/10.3389/fpls.2016.00694
- Bacterial proteolytic complexes as therapeutic targets vol.11, pp.10, 2012, https://doi.org/10.1038/nrd3846
- Distinct Biological Potential of Streptococcus gordonii and Streptococcus sanguinis Revealed by Comparative Genome Analysis vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-02399-4
- The role of serine protease HtrA in acute ulcerative enterocolitis and extra-intestinal immune responses during Campylobacter jejuni infection of gnotobiotic IL-10 deficient mice vol.4, 2014, https://doi.org/10.3389/fcimb.2014.00077
- Allosteric Activation of DegS, a Stress Sensor PDZ Protease vol.131, pp.3, 2007, https://doi.org/10.1016/j.cell.2007.08.044
- The thylakoid protease Deg1 is involved in photosystem-II assembly in Arabidopsis thaliana vol.62, pp.2, 2010, https://doi.org/10.1111/j.1365-313X.2010.04140.x
- Solution structure of Q388A3 PDZ domain from Trypanosoma brucei vol.194, pp.2, 2016, https://doi.org/10.1016/j.jsb.2016.02.018
- Analysis of Edwardsiella tarda DegP, a serine protease and a protective immunogen vol.28, pp.4, 2010, https://doi.org/10.1016/j.fsi.2010.01.004
- A secretory multifunctional serine protease, DegP ofPlasmodium falciparum, plays an important role in thermo-oxidative stress, parasite growth and development vol.281, pp.6, 2014, https://doi.org/10.1111/febs.12732
- Signaling mechanisms for activation of extracytoplasmic function (ECF) sigma factors vol.1778, pp.9, 2008, https://doi.org/10.1016/j.bbamem.2007.06.005
- Comparative analysis of gene expression profiles between the normal human cartilage and the one with endemic osteoarthritis vol.17, pp.1, 2009, https://doi.org/10.1016/j.joca.2008.05.008
- The HtrA/DegP family protease MamE is a bifunctional protein with roles in magnetosome protein localization and magnetite biomineralization vol.80, pp.4, 2011, https://doi.org/10.1111/j.1365-2958.2011.07631.x
- Control ofPseudomonas aeruginosaAlgW protease cleavage of MucA by peptide signals and MucB vol.72, pp.2, 2009, https://doi.org/10.1111/j.1365-2958.2009.06654.x
- Deg proteases and their role in protein quality control and processing in different subcellular compartments of the plant cell vol.145, pp.1, 2012, https://doi.org/10.1111/j.1399-3054.2011.01533.x
- Chaperone–protease networks in mitochondrial protein homeostasis vol.1833, pp.2, 2013, https://doi.org/10.1016/j.bbamcr.2012.06.005
- Rapid paracellular transmigration of Campylobacter jejuni across polarized epithelial cells without affecting TER: role of proteolytic-active HtrA cleaving E-cadherin but not fibronectin vol.4, pp.1, 2012, https://doi.org/10.1186/1757-4749-4-3
- The mitochondrial serine protease HtrA2/Omi: an overview vol.15, pp.3, 2008, https://doi.org/10.1038/sj.cdd.4402291
- OMP Peptides Activate the DegS Stress-Sensor Protease by a Relief of Inhibition Mechanism vol.17, pp.10, 2009, https://doi.org/10.1016/j.str.2009.07.017
- OMP Peptides Modulate the Activity of DegS Protease by Differential Binding to Active and Inactive Conformations vol.33, pp.1, 2009, https://doi.org/10.1016/j.molcel.2008.12.017
- Analysis of the DNA region mediating increased thermotolerance at 58°C in Cronobacter sp. and other enterobacterial strains vol.100, pp.2, 2011, https://doi.org/10.1007/s10482-011-9585-y
- Protein Degradation within Mitochondria: Versatile Activities of AAA Proteases and Other Peptidases vol.42, pp.3, 2007, https://doi.org/10.1080/10409230701380452
- The structural basis of mode of activation and functional diversity: A case study with HtrA family of serine proteases vol.516, pp.2, 2011, https://doi.org/10.1016/j.abb.2011.10.007
- Autotransporter secretion: varying on a theme vol.164, pp.6, 2013, https://doi.org/10.1016/j.resmic.2013.03.010
- Structural Insight into Serine Protease Rv3671c that Protects M. tuberculosis from Oxidative and Acidic Stress vol.18, pp.10, 2010, https://doi.org/10.1016/j.str.2010.06.017
- Structural and Functional Analysis of HtrA1 and Its Subdomains vol.20, pp.6, 2012, https://doi.org/10.1016/j.str.2012.03.021
- Extracellular secretion of protease HtrA fromCampylobacter jejuniis highly efficient and independent of its protease activity and flagellum vol.3, pp.3, 2013, https://doi.org/10.1556/EuJMI.3.2013.3.3
- Genetic determinants of heat resistance in Escherichia coli vol.6, 2015, https://doi.org/10.3389/fmicb.2015.00932
- Cell envelope stress response in Gram-positive bacteria vol.32, pp.1, 2008, https://doi.org/10.1111/j.1574-6976.2007.00091.x
- Mitochondrial protein quality control in health and disease vol.171, pp.8, 2014, https://doi.org/10.1111/bph.12430
- Role of group AStreptococcus HtrA in the maturation of SpeB protease vol.7, pp.24, 2007, https://doi.org/10.1002/pmic.200700626
- Architecture and regulation of HtrA-family proteins involved in protein quality control and stress response vol.70, pp.5, 2013, https://doi.org/10.1007/s00018-012-1076-4
- Metabolite stress and tolerance in the production of biofuels and chemicals: Gene-expression-based systems analysis of butanol, butyrate, and acetate stresses in the anaerobeClostridium acetobutylicum 2010, https://doi.org/10.1002/bit.22628
- Unraveling tobacco BY-2 protein complexes with BN PAGE/LC–MS/MS and clustering methods vol.74, pp.8, 2011, https://doi.org/10.1016/j.jprot.2011.03.023
- Characterization of the Structure and Function of Escherichia coli DegQ as a Representative of the DegQ-like Proteases of Bacterial HtrA Family Proteins vol.19, pp.9, 2011, https://doi.org/10.1016/j.str.2011.06.013
- Escherichia coli exhibits a membrane-related response to a small arginine- and tryptophan-rich antimicrobial peptide vol.12, pp.14, 2012, https://doi.org/10.1002/pmic.201100636
- The HtrA-Like Protease CD3284 Modulates Virulence of Clostridium difficile vol.82, pp.10, 2014, https://doi.org/10.1128/IAI.02336-14
- Amino-Terminal Processing of Helicobacter pylori Serine Protease HtrA: Role in Oligomerization and Activity Regulation vol.9, pp.1664-302X, 2018, https://doi.org/10.3389/fmicb.2018.00642
- PDZ domains and their binding partners: structure, specificity, and modification vol.8, pp.1, 2010, https://doi.org/10.1186/1478-811X-8-8
- Distinct Contribution of the HtrA Protease and PDZ Domains to Its Function in Stress Resilience and Virulence of Bacillus anthracis vol.10, pp.1664-302X, 2019, https://doi.org/10.3389/fmicb.2019.00255