• Title/Summary/Keyword: chaotic motion

Search Result 80, Processing Time 0.023 seconds

A Numerical Experiment on the Control of Chaotic Motion (혼돈 운동 제어에 관한 수치 실험)

  • 홍대근;주재만;박철희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.154-159
    • /
    • 1997
  • In this paper, we describe the OGY method that convert the motion on a chaotic attractor to attracting time periodic motion by malting only small perturbations of a control parameter. The OGY method is illustrated by application to the control of the chaotic motion in chaotic attractor to happen at the famous Logistic map and Henon map and confirm it by making periodic motion. We apply it the chaotic motion at the behavior of the thin beam under periodic torsional base-excitation, and this chaotic motion is made the periodic motion by numerical experiment in the time evaluation on this chaotic motion. We apply the OGY method with the Jacobian matrix to control the chaotic motion to the periodic motion.

  • PDF

Chaotic Dynamics in Tobacco's Addiction Model

  • Bae, Youngchul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.322-331
    • /
    • 2014
  • Chaotic dynamics is an active area of research in biology, physics, sociology, psychology, physiology, and engineering. This interest in chaos is also expanding to the social scientific fields such as politics, economics, and argument of prediction of societal events. In this paper, we propose a dynamic model for addiction of tobacco. A proposed dynamical model originates from the dynamics of tobacco use, recovery, and relapse. In order to make an addiction model of tobacco, we try to modify and rescale the existing tobacco and Lorenz models. Using these models, we can derive a new tobacco addiction model. Finally, we obtain periodic motion, quasi-periodic motion, quasi-chaotic motion, and chaotic motion from the addiction model of tobacco that we established. We say that periodic motion and quasi-periodic motion are related to the pre-addiction or recovery stage, respectively. Quasi-chaotic and chaotic motion are related to the addiction stage and relapse stage, respectively.

Chaotic Vibration of a Curved Pipe Conveying Oscillatory Flow (조화진동유동을 포함한 곡선 파이프 계의 혼돈 운동 연구)

  • 박철희;홍성철;김태정
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.489-498
    • /
    • 1997
  • In this paper, chaotic motions of a curved pipe conveying oscillatory flow are theoretically investigated. The nonliear partial differential equation of motion is derived by Newton's method. The transformed nonlinear ordinary differential equation is a type of Hill's equation, which has the external and parametric excitation with a same frequency. Bifurcation curves of chaotic motion of the piping systems are obtained by applying Melnikov's method. Numerical simulations are performed to demonstrate theoretical results and show the strange attractor of the chaotic motion.

  • PDF

Chaotic Vibration of a Curved Oipe Conveying Oscillatory Flow (조화진동유동을 포함한 곡선파이프계의 혼돈운동 연구)

  • 박철희;홍성철;김태정
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.288-294
    • /
    • 1996
  • In this paper, Chaotic motions of a curved pipe conveying oscillatory flow are theoretically investigated. The nonlinear partial differential equation of motion is derived by Newton's method. The transformed nonlinear ordinary differential equation is a type of Hill's equation, which have the parametric and external excitation. Bifurcation curves of chaotic motion of the piping systems are obtained by applying Melnikov's method. Poincare maps numerically demonstrate theoretical results and show transverse homoclinic orbit of the chaotic motion.

  • PDF

Chaotic Vibration of a Straight Pipe Conveying Oscillatory Flow (조화진동유동을 포함한 직선파이프계의 혼돈운동 연구)

  • Pak, Chul-Hui;Hong, Sung-Chul;Jung, Wook
    • Journal of KSNVE
    • /
    • v.6 no.2
    • /
    • pp.233-244
    • /
    • 1996
  • In this paper chaotic mothions of a straight pipe conveying oscillatory flow and being subjected to external forces such as earthquake are theoretically investigated. The nonlinear partial differential equation of motion is derived by Newton's method. In this equation, the nonlinear curvature of the pipe and the thermal expansion effects are contained. The nonlinear ordinary differential equation transformed from that partial differential equation is a type of Hill's equations, which have the parametric and external exciation term. This original system is transfered to the averaged system by the averaging theory. Bifurcation curves of chaotic motion of the piping system are obtained in the general case of the frequency ratio, n by applying Melnikov's method. Numerical simulations are performed to demonstrate theorectical results and show strange attactors of the chaotic motion.

  • PDF

Chaos Control of the Pitch Motion of the Gravity-gradient Satellites in an Elliptical Orbit (타원궤도상의 중력구배 인공위성의 Pitch운동의 혼돈계 제어)

  • Lee, Mok-In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.137-143
    • /
    • 2011
  • The pitch motion of a gravity-gradient satellite can be chaotic, depending on the ratio of mass moments of inertia and the eccentricity of the satellite orbit. For a precise prediction of motion, chaotic pitch motion has to be changed to non-chaotic motion. Feedback control can be used to obtain nonchaotic pitch motion. For chaos control and stabilization of the pitch motion of a gravity-gradient satellite, a feedback control system is designed, based on the linear nonautonomous system obtained by linearizing the nonlinear pitch motion. The control law obtained has two parameters and is applied to chaotic nonlinear pitch motion. The nonlinear control system satisfies the proposed control objectives in the range of the nonchaotic parameter space.

A study on Controlling chaos for Bonhoeffer-van der Pol oscillation model by small parameter perturbation (Bonhoeffer - van der Pol 오실레이터 모델에서의 미소 파라미터 섭동에 의한 카오스 제어)

  • Bae, Youngchul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.1 no.1
    • /
    • pp.49-55
    • /
    • 2006
  • Applied by periodic Stimulating Currents in Bonhoeffer -Van der Pol(BVP) model, chaotic and periodic phenomena occured at specific conditions. The conditions of the chaotic motion in BVP comprised 0.7182< $A_1$ <0.792 and 1.09< $A_1$ <1.302 proved by the analysis of phase plane, bifurcation diagram, and lyapunov exponent. To control the chaotic motion, two methods were suggested by the first used the amplitude parameter A1, $A1={\varepsilon}((x-x_s)-(y-y_s))$ and the second used the temperature parameterc, $c=c(1+{\eta}cos{\Omega}t)$ which the values of ${\eta},{\Omega}$ varied respectlvly, and $x_s$, $y_s$ are the periodic signal. As a result of simulating these methods, the chaotic phenomena was controlled with the periodic motion of periodisity. The feasibilities of the chaotic and the periodic phenomena were analysed by phase plane Poincare map and lyapunov exponent.

  • PDF

Non-periodic motions and fractals of a circular arch under follower forces with small disturbances

  • Fukuchi, Nobuyoshi;Tanaka, Takashi
    • Steel and Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.87-101
    • /
    • 2006
  • The deformation and dynamic behavior mechanism of submerged shell-like lattice structures with membranes are in principle of a non-conservative nature as circulatory system under hydrostatic pressure and disturbance forces of various types, existing in a marine environment. This paper deals with a characteristic analysis on quasi-periodic and chaotic behavior of a circular arch under follower forces with small disturbances. The stability region chart of the disturbed equilibrium in an excitation field was calculated numerically. Then, the periodic and chaotic behaviors of a circular arch were investigated by executing the time histories of motion, power spectrum, phase plane portraits and the Poincare section. According to the results of these studies, the state of a dynamic aspect scenario of a circular arch could be shifted from one of quasi-oscillatory motion to one of chaotic motion. Moreover, the correlation dimension of fractal dynamics was calculated corresponding to stochastic behaviors of a circular arch. This research indicates the possibility of making use of the correlation dimension as a stability index.

Nonlinear Dynamic Analysis of Cantilever Tube Conveying Fluid with System Identification

  • Lim, Jae-Hoon;Jung, Goo-Choong;Park, Yeon-Sun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1994-2003
    • /
    • 2003
  • The vibration of a flexible cantilever tube with nonlinear constraints when it is subjected to flow internally with fluids is examined by experimental and theoretical analysis. These kinds of studies have been performed to find the existence of chaotic motion. In this paper, the important parameters of the system leading to such a chaotic motion such as Young's modulus and the coefficient of viscoelastic damping are discussed. The parameters are investigated by means of system identification so that comparisons are made between numerical analysis using the design parameters and the experimental results. The chaotic region led by several period-doubling bifurcations beyond the Hopf bifurcation is also re-established with phase portraits, bifurcation diagram and Lyapunov exponent so that one can define optimal parameters for system design.

Nonlinear Dynamic Analysis of a Cantilever Tube Conveying Fluid with System Identification (시스템 규명을 통한 외팔 송수관의 비선형 동적 거동 해석)

  • 임재훈;정구충;최연선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.495-500
    • /
    • 2003
  • The vibration of a flexible cantilever tube with nonlinear constraints when it is subjected to flow internally with fluids is examined by experiment and theoretical analysis. These kind of studies have often been performed that finds the existence of chaotic motion. In this paper, the important parameters of the system leading to such a chaotic motion such as Young's modulus and coefficient of viscoelasticity in tube material are discussed. The parameters are investigated by means of a system identification so that comparisons are made between numerical analysis using the parameters of a handbook and the experimental results. The chaotic region led by several period-doubling bifurcations beyond the Hopf bifurcation is also re-established with phase portraits and bifurcation diagram so that one can define optimal parameters for system design.

  • PDF