• Title/Summary/Keyword: channel thickness

Search Result 556, Processing Time 0.026 seconds

Study on axial compressive behavior of quadruple C-channel built-up cold-formed steel columns

  • Nie, Shaofeng;Zhou, Tianhua;Liao, Fangfang;Yang, Donghua
    • Structural Engineering and Mechanics
    • /
    • v.70 no.4
    • /
    • pp.499-511
    • /
    • 2019
  • In this study, the axial compressive behavior of novel quadruple C-channel built-up cold-formed steel columns with different slenderness ratio was investigated, using the experimental and numerical analysis. The axial compressive capacity and failure modes of the columns were obtained and analyzed. The finite element models considering the geometry, material and contact nonlinearity were developed to simulate and analyze the structural behavior of the columns further. There was a great correlation between the numerical analyses and test results, which indicated that the finite element model was reasonable and accurate. Then influence of, slenderness ratio, flange width-to-thickness ratio and screw spacing on the mechanical behavior of the columns were studied, respectively. The tests and numerical results show that due to small slenderness ratio, the failure modes of the specimens are generally local buckling and distortional buckling. The axial compressive strength and stiffness of the quadruple C-channel built-up cold-formed steel columns decrease with the increase of maximum slenderness ratio. When the screw spacing is ranging from 150mm to 450mm, the axial compressive strength and stiffness of the quadruple C-channel built-up cold-formed steel columns change little. The axial compressive capacity of quadruple C-channel built-up cold-formed steel columns increases with the decrease of flange width-thickness ratio. A modified effective length factor is proposed to quantify the axial compressive capacity of the quadruple C-channel built-up cold-formed steel columns with U-shaped track in the ends.

The Effects of Nanocrystalline Silicon Thin Film Thickness on Top Gate Nanocrystalline Silicon Thin Film Transistor Fabricated at 180℃

  • Kang, Dong-Won;Park, Joong-Hyun;Han, Sang-Myeon;Han, Min-Koo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.2
    • /
    • pp.111-114
    • /
    • 2008
  • We studied the influence of nanocrystalline silicon (nc-Si) thin film thickness on top gate nc-Si thin film transistor (TFT) fabricated at $180^{\circ}C$. The nc-Si thickness affects the characteristics of nc-Si TFT due to the nc-Si growth similar to a columnar. As the thickness of nc-Si increases from 40 nm to 200 nm, the grain size was increased from 20 nm to 40 nm. Having a large grain size, the thick nc-Si TFT surpasses the thin nc-Si TFT in terms of electrical characteristics such as field effect mobility. The channel resistance was decreased due to growth of the grain. We obtained the experimental results that the field effect mobility of the fabricated devices of which nc-Si thickness is 60, 90 and 130 nm are 26, 77 and $119\;cm^2/Vsec$, respectively. The leakage current, however, is increased from $7.2{\times}10^{-10}$ to $1.9{\times}10^{-8}\;A$ at $V_{GS}=-4.4\;V$ when the nc-Si thickness increases. It is originated from the decrease of the channel resistance.

Evanescent-Mode Analysis of Short-Channel Effects in MOSFETs (Evanescent-Mode를 이용한 MOSFET의 단채널 효과 분석)

  • 이지영;신형순
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.10
    • /
    • pp.24-31
    • /
    • 2003
  • Short channel effects (SCE) of bulk MOSFET with super-steep retrograded channels (SSR), fully-depleted SOI, and double-gate MOSFET have been analyzed using a evanescent-mode analysis. Analytical equations of the characteristics scaling-length (λ) for three structures have been derived and the accuracy of the calculated λ was verified by comparing to the device simulation result. It is found that the minimum channel length should be larger than 5λ and the depletion thickness of the SSR should be around 30 nm in order to be applicable to 70 nm CMOS technology. High-$textsc{k}$ dielectric shows a limitation in scaling due to the drain-field penetration through the dielectric unless the equivalent SiO2 thickness is very thin.

4H-SiC High Power VJFET with modulation of n-epi layer and channel dimension (N-epi 영역과 Channel 폭에 따른 4H-SiC 고전력 VJFET 설계)

  • Ahn, Jung-Joon;Bahng, Wook;Kim, Sang-Cheol;Kim, Nam-Kyun;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.350-350
    • /
    • 2010
  • Silicon carbide (SiC), one of the well known wide band gap semiconductors, shows high thermal conductivities, chemical inertness and breakdown energies. The design of normally-off 4H-SiC VJFETs [1] has been reported and 4H-SiC VJFETs with different lateral JFET channel opening dimensions have been studied [2]. In this work, 4H-SiC based VJFETs has been designed using the device simulator (ATLAS, Silvaco Data System, Inc). We varied the n-epi layer thickness (from $6\;{\mu}m$ to $10\;{\mu}m$) and the channel width (from $0.9\;{\mu}m$ to $1.2\;{\mu}m$), and investigated the static characteristics as blocking voltages, threshold voltages, on-resistances. We have shown that silicon carbide JFET structures of highly intensified blocking voltages with optimized figures of merit can thus be achieved by adjusting the epi layer thickness and channel width.

  • PDF

Device Design Guideline for Nano-scale SOI MOSFETs (나노 스케일 SOI MOSFET를 위한 소자설계 가이드라인)

  • Lee, Jae-Ki;Yu, Chong-Gun;Park, Jong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.7
    • /
    • pp.1-6
    • /
    • 2002
  • For an optimum device design of nano-scale SOI devices, this paper describes the short channel effects of multi-gate structures SOI MOSFETs such as double gate, triple gate and quadruple gate, as well as a new proposed Pi gate using computer simulation. The simulation has been performed with different channel doping concentrations, channel widths, silicon film thickness, and vertical gate extension depths of Pi gate. From the simulation results, it is found that Pi gate devices have a large margin in determination of doping concentrations, channel widths and film thickness comparing to double and triple gate devices because Pi gate devices offer a better short channel effects.

Relation between Conduction Path and Breakdown Voltages of Double Gate MOSFET (DGMOSFET의 전도중심과 항복전압의 관계)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.917-921
    • /
    • 2013
  • This paper have analyzed the change of breakdown voltage for conduction path of double gate(DG) MOSFET. The low breakdown voltage among the short channel effects of DGMOSFET have become obstacles of device operation. The analytical solution of Poisson's equation have been used to analyze the breakdown voltage, and Gaussian function been used as carrier distribution to analyze closely for experimental results. The change of breakdown voltages for conduction path have been analyzed for device parameters such as channel length, channel thickness, gate oxide thickness and doping concentration. Since this potential model has been verified in the previous papers, we have used this model to analyze the breakdown voltage. Resultly, we know the breakdown voltage is greatly influenced on the change of conduction path for device parameters of DGMOSFET.

Analysis of Thick-walled Composite Channel Beam Under Flexural Loading (굽힘 하중을 받는 두꺼운 채널 빔의 해석)

  • 최용진;전흥재;변준형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.69-73
    • /
    • 2003
  • A open section thick composite beam model is suggested in this study. In the model, the primary and secondary warping and transverse shear effects are incorporated. The rigidities associated with thick channel composite beam and thin channel composite beam are obtained and compared. The results show that the difference among rigidities of the thick and thin composite beams increase as the wall thickness increases.

  • PDF

Analysis of Breakdown Voltages of Double Gate MOSFET Using 2D Potential Model (이차원 전위분포모델을 이용한 이중게이트 MOSFET의 항복전압 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.5
    • /
    • pp.1196-1202
    • /
    • 2013
  • This paper have analyzed the change of breakdown voltage for channel doping concentration and device parameters of double gate(DG) MOSFET using two dimensional potential model. The low breakdown voltage becomes the obstacle of power device operation, and breakdown voltage decreases seriously by the short channel effects derived from scaled down device in the case of DGMOSFET. The two dimensional analytical potential distribution derived from Poisson's equation have been used to analyze the breakdown voltage for device parameters such as channel length, channel thickness, gate oxide thickness and channel doping concentration. Resultly, we could observe the breakdown voltage has greatly influenced on device dimensional parameters as well as channel doping concentration, especially the shape of Gaussian function used as channel doping concentration.

Numerical study on the effect of viscoelasticity on pressure drop and film thickness for a droplet flow in a confined microchannel

  • Chung, Chang-Kwon;Kim, Ju-Min;Ahn, Kyung-Hyun;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.1
    • /
    • pp.59-69
    • /
    • 2009
  • The prediction of pressure drop for a droplet flow in a confined micro channel is presented using FE-FTM (Finite Element - Front Tracking Method). A single droplet is passing through 5:1:5 contraction - straight narrow channel - expansion flow domain. The pressure drop is investigated especially when the droplet flows in the straight narrow channel. We explore the effects of droplet size, capillary number (Ca), viscosity ratio ($\chi$) between droplet and medium, and fluid elasticity represented by the Oldroyd-B constitutive model on the excess pressure drop (${\Delta}p^+$) against single phase flow. The tightly fitted droplets in the narrow channel are mainly considered in the range of $0.001{\leq}Ca{\leq}1$ and $0.01{\leq}{\chi}{\leq}100$. In Newtonian droplet/Newtonian medium, two characteristic features are observed. First, an approximate relation ${\Delta}p^+{\sim}{\chi}$ observed for ${\chi}{\geq}1$. The excess pressure drop necessary for droplet flow is roughly proportional to $\chi$. Second, ${\Delta}p^+$ seems inversely proportional to Ca, which is represented as ${\Delta}p^+{\sim}Ca^m$ with negative m irrespective of $\chi$. In addition, we observe that the film thickness (${\delta}_f$) between droplet interface and channel wall decreases with decreasing Ca, showing ${\delta}_f{\sim}Ca^n$ Can with positive n independent of $\chi$. Consequently, the excess pressure drop (${\Delta}p^+$) is strongly dependent on the film thickness (${\delta}_f$). The droplets larger than the channel width show enhancement of ${\Delta}p^+$, whereas the smaller droplets show no significant change in ${\Delta}p^+$. Also, the droplet deformation in the narrow channel is affected by the flow history of the contraction flow at the entrance region, but rather surprisingly ${\Delta}p^+$ is not affected by this flow history. Instead, ${\Delta}p^+$ is more dependent on ${\delta}_f$ irrespective of the droplet shape. As for the effect of fluid elasticity, an increase in ${\delta}_f$ induced by the normal stress difference in viscoelastic medium results in a drastic reduction of ${\Delta}p^+$.

Analysis of Transport Characteristics for Double Gate MOSFET using Analytical Current-Voltage Model (해석학적 전류-전압모델을 이용한 이중게이트 MOSFET의 전송특성분석)

  • Jung Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.9
    • /
    • pp.1648-1653
    • /
    • 2006
  • In this paper, transport characteristics have been investigated using analytical current-voltage model for double gate MOSFET(DGMOSFET). Scaling down to 100nm of gate length for MOSFET can bring about various problems such as a threshold voltage roll-off and increasing off current by tunneling since thickness of oxide is down by 1.fnm and doping concentration is increased. A current-voltage characteristics have been calculated according to changing of channel length,using analytical current-voltage relation. The analytical model has been verified by calculating I-V relation according to changing of oxide thickness and channel thickness as well as channel length. A current-voltage characteristics also have been compared and analyzed for operating temperature. When gate voltage is 2V, it is shown that a current-voltage characteristic in 77K is superior to in room temperature.