• Title/Summary/Keyword: channel state information (CSI) feedback

Search Result 46, Processing Time 0.019 seconds

A Channel State Information Feedback Method for Massive MIMO-OFDM

  • Kudo, Riichi;Armour, Simon M.D.;McGeehan, Joe P.;Mizoguchi, Masato
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.352-361
    • /
    • 2013
  • Combining multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) with a massive number of transmit antennas (massive MIMO-OFDM) is an attractive way of increasing the spectrum efficiency or reducing the transmission energy per bit. The effectiveness of Massive MIMO-OFDM is strongly affected by the channel state information (CSI) estimation method used. The overheads of training frame transmission and CSI feedback decrease multiple access channel (MAC) efficiency and increase the CSI estimation cost at a user station (STA). This paper proposes a CSI estimation scheme that reduces the training frame length by using a novel pilot design and a novel unitary matrix feedback method. The proposed pilot design and unitary matrix feedback enable the access point (AP) to estimate the CSI of the signal space of all transmit antennas using a small number of training frames. Simulations in an IEEE 802.11n channel verify the attractive transmission performance of the proposed methods.

Low-Overhead Feedback Topology Design for the K-User MIMO Interference Alignment

  • Jin, Jin;Gao, Xiang-Chuan;Li, Xingwang;Cavalcante, Charles Casimiro;Li, Lihua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5304-5322
    • /
    • 2018
  • Since designing a feedback topology is a practical way to implement interference alignment at reduced cost of channel state information (CSI) feedback, six feedback topologies have been presented in prior works for a K-user multiple-input multiple-output interference channel. To fully reveal the potential benefits of the feedback topology in terms of the saving of CSI overhead, we propose a new feedback topology in this paper. By efficiently performing dimensionality-decreasing at the transmitter side and aligning interference signals at a subset of receivers, we show that the proposed feedback topology obtains substantial reduction of feedback cost over the existing six feedback designs under the same antenna configuration.

A Robust Adaptive MIMO-OFDM System Over Multipath Transmission Channels (다중경로 전송 채널 특성에 강건한 적응 MIMO-OFDM 시스템)

  • Kim, Hyun-Dong;Choe, Sang-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7A
    • /
    • pp.762-769
    • /
    • 2007
  • Adaptive MIMO-OFDM (Orthogonal Frequency Division Multiplexing) system adaptively changes modulation scheme depending on feedback channel state information (CSI). The CSI feedback channel which is the reverse link channel has multiple symbol delays including propagation delay, processing delay, frame delay, etc. The unreliable CSI due to feedback delay degrades adaptive modulation system performance. This paper compares the MSE and data capacity with respect to delay and channel signal to noise ratio for the two multi-step channel prediction schemes, CTSBP and BTSBP, such that robust adaptive SISO-OFDM/MIMO-OFDM is designed over severe mobile multipath channel conditions. This paper presents an interpolation method to reduce feedback overhead for adaptive MIMO-OFDM and shows MSE with respect to interpolation interval.

Reducing Feedback Overhead in Opportunistic Scheduling of Wireless Networks Exploiting Overhearing

  • Baek, Seung-Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.2
    • /
    • pp.593-609
    • /
    • 2012
  • We propose a scheme to reduce the overhead associated with channel state information (CSI) feedback required for opportunistic scheduling in wireless access networks. We study the case where CSI is partially overheard by mobiles and thus one can suppress transmitting CSI reports for time varying channels of inferior quality. We model the mechanism of feedback suppression as a Bayesian network, and show that the problem of minimizing the average feedback overhead is NP-hard. To deal with hardness of the problem we identify a class of feedback suppression structures which allow efficient computation of the cost. Leveraging such structures we propose an algorithm which not only captures the essence of seemingly complex overhearing relations among mobiles, but also provides a simple estimate of the cost incurred by a suppression structure. Simulation results are provided to demonstrate the improvements offered by the proposed scheme, e.g., a savings of 63-83% depending on the network size.

Performance Improvement on Adaptive OFDM System with a Multi-Step Channel Predictor over Mobile Fading Channels (이동 페이딩 채널하의 멀티 스텝 채널 예측기를 이용한 적응 OFDM 시스템의 성능개선)

  • Ahn, Hyun-Jun;Kim, Hyun-Dong;Choe, Sang-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12A
    • /
    • pp.1182-1188
    • /
    • 2006
  • Adaptive OFDM(Orthogonal Frequency Division Multiplexing) improves data capacity and system performance over multipath fading by adaptively changing modulation schemes according to channel state information(CSI). To achieve a good performance in adaptive OFDM systems, CSI should be transmitted from receiver to transmitter in real time through feedback channel. However, practically, the CSI feedback delay d which is the sum of the data processing delay and the propagation delay is not negligible and damages to the reliability of CSI such that the performance of adaptive OFDM is degraded. This paper presents an adaptive OFDM system with a multistep predictor on the frequency axis to effectively compensate the multiple feedback delays $d(\geq2)$. Via computer simulation we compare the proposed scheme and existing adaptive OFDM schemes with respect to data capacity and system performance.

Compressed Channel Feedback for Correlated Massive MIMO Systems

  • Sim, Min Soo;Park, Jeonghun;Chae, Chan-Byoung;Heath, Robert W. Jr.
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.95-104
    • /
    • 2016
  • Massive multiple-input multiple-output (MIMO) is a promising approach for cellular communication due to its energy efficiency and high achievable data rate. These advantages, however, can be realized only when channel state information (CSI) is available at the transmitter. Since there are many antennas, CSI is too large to feed back without compression. To compress CSI, prior work has applied compressive sensing (CS) techniques and the fact that CSI can be sparsified. The adopted sparsifying bases fail, however, to reflect the spatial correlation and channel conditions or to be feasible in practice. In this paper, we propose a new sparsifying basis that reflects the long-term characteristics of the channel, and needs no change as long as the spatial correlation model does not change. We propose a new reconstruction algorithm for CS, and also suggest dimensionality reduction as a compression method. To feed back compressed CSI in practice, we propose a new codebook for the compressed channel quantization assuming no other-cell interference. Numerical results confirm that the proposed channel feedback mechanisms show better performance in point-to-point (single-user) and point-to-multi-point (multi-user) scenarios.

Performance Evaluation of Interference Alignment Based on Analog CSI Feedback in Continuously-Varying Interference Channel (연속적으로 변하는 간섭채널에서 아날로그 피드백을 이용한 간섭정렬의 성능 평가)

  • Song, Kyoung-Young;Lim, Dae-Woon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.1
    • /
    • pp.65-67
    • /
    • 2014
  • In this letter, the performance of the interference channel with continuously varying channel is evaluated by using interference alignment based on practical channel estimation and channel state information(CSI) feedback and ideal Doppler frequency estimation. In this paper, performance evaluation is performed in terms of sum rate for 3-user interference channel. And also, sum rate is measured according to frequency of channel estimation relating with the calculation complexity. Simulation results show that the proposed scheme outperforms the conventional one which assumes that the channel is constant in a frame in some circumstances.

Research on Per-cell Codebook based Channel Quantization for CoMP Transmission

  • Hu, Zhirui;Feng, Chunyan;Zhang, Tiankui;Gao, Qiubin;Sun, Shaohui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.6
    • /
    • pp.1828-1847
    • /
    • 2014
  • Coordinated multi-point (CoMP) transmission has been regarded as a potential technology for LTE-Advanced. In frequency division duplexing systems, channel quantization is applied for reporting channel state information (CSI). Considering the dynamic number of cooperation base stations (BSs), asymmetry feature of CoMP channels and high searching complexity, simply increasing the size of the codebook used in traditional multiple antenna systems to quantize the global CSI of CoMP systems directly is infeasible. Per-cell codebook based channel quantization to quantize local CSI for each BS separately is an effective method. In this paper, the theoretical upper bounds of system throughput are derived for two codeword selection schemes, independent codeword selection (ICS) and joint codeword selection (JCS), respectively. The feedback overhead and selection complexity of these two schemes are analyzed. In the simulation, the system throughput of ICS and JCS is compared. Both analysis and simulation results show that JCS has a better tradeoff between system throughput and feedback overhead. The ICS has obvious advantage in complexity, but it needs additional phase information (PI) feedback for obtaining the approximate system throughput with JCS. Under the same number of feedback bits constraint, allocating the number of bits for channel direction information (CDI) and PI quantization can increase the system throughput, but ICS is still inferior to JCS. Based on theoretical analysis and simulation results, some recommendations are given with regard to the application of each scheme respectively.

Ordered Interference Alignment in MIMO Interference Channel with Limited Feedback (제한된 궤환 채널 기반 MIMO 간섭 채널에서의 순서화 된 간섭 정렬 기법 설계)

  • Cho, Sungyoon;Yang, Minho;Yang, Janghoon;Kim, Dong Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.10
    • /
    • pp.938-946
    • /
    • 2012
  • Interference alignment (IA) is a data transmission technique that achieves the maximum degrees-of-freedom (DoF) in the multiuser interference channel for high signal-to-noise ratios (SNRs). However, most prior works on IA are based on the unrealistic assumption that perfect and global channel-state information (CSI) is available at all transmitters and receivers. In this paper, we propose the efficient design of feedback framework for IA that substantially suppresses the feedback overhead. While the feedback overhead in the conventional IA quadratically increases with K, the proposed feedback scheme supports the sequential exchange of computed IA precoders between transmitters and receivers and reduces the feedback overhead that linearly scales with K. Moreover, we analyze the residual interference due to the quantization error in limited feedback and propose the ordered IA algorithm that selects IA pair to minimize the sum residual interference in given channel realizations.

A New Compressive Feedback Scheme Based on Distributed Compressed Sensing for Time-Correlated MIMO Channel

  • Li, Yongjie;Song, Rongfang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.2
    • /
    • pp.580-592
    • /
    • 2012
  • In this paper, a new compressive feedback (CF) scheme based on distributed compressed sensing (DCS) for time-corrected MIMO channel is proposed. First, the channel state information (CSI) is approximated by using a subspace matrix, then, the approximated CSI is compressed using a compressive matrix. At the base station, the approximated CSI can be robust recovered with simultaneous orthogonal matching pursuit (SOMP) algorithm by using forgone CSIs. Simulation results show our proposed DCS-CF method can improve the reliability of system without creating a large performance loss.