• Title/Summary/Keyword: channel sections

Search Result 205, Processing Time 0.027 seconds

Temporal Change of Fluvial Geomorphology in the Middle Reaches of the Sumjin River, Korea (섬진강 중류 (곡성-순창) 구간의 하천지형 변화 연구)

  • 남욱현;양동윤;김주용;김진관
    • The Korean Journal of Quaternary Research
    • /
    • v.16 no.1
    • /
    • pp.17-27
    • /
    • 2002
  • Analysis of No. 199∼145 cross-sections set up by the Ministry of Construction (1978) in the middle reaches of the Sumjin River around Sunchang, Daegang, and Goksung areas have been done for delineating the changes In fluvial geomorphic features. The entire river-bed in the study area has been considerably degraded since 1978. In some cross-sections, the thalweg shillings are observed. Two aspects are responsible for the erosion-dominant environment. First, flow velocity has been increased. Human activities including wetland destruction, ex-channel destruction and artificial levee construction reduced the channel width, and fixed the channel geometry. This has resulted in increase of the water velocity. Pebble and granule∼coarse sand are prevailing on the river-bed, indicate the high speed of the currents. Second, aggregate has been intensively mined during 1980s∼1990s around the areas. Especially, in the right side of the cross-sections No. 188∼187 and the left side of the cross-section No. 155, erosion toward under the artificial levee is remarkable. This can be led to bank failure in case of heavy rainfall.

  • PDF

Bedload Sediment Transport and Morphological Change in Cross Sections of Straight Open-Channel (직선 개수로 횡단면에서의 소류사 이송과 지형 변화)

  • Pham, Chien Van;Kim, Tae-Boem;Choi, Sung-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.62-66
    • /
    • 2010
  • This study presents velocities of bedload sediment transport in both longitudinal and lateral directions and applied in considering morphological change of straight open channel. The velocities of particle motion have obtained by considering the forces balance acting on particles on the bed between the drag, tangential component of the immersed weight of the particle, and Coulomb's resistive forces. Numerical profiles of particle motion velocities reveals good agreement in comparison between this study and Kovacs and Parker (1994). The evaluated velocities components of particle transport are get used to estimate bedload transport rate in considering morphological change of straight open channel. For the application, numerical solution is applied to laboratory experiment which shows very close solution profiles between this study and observed data of a self-formed straight channel.

  • PDF

A modeling for an ionospheric channel using recursive digital filter (Recursive 디지털 필터에 의한 전리층 채널 모델링)

  • 김성진
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.2
    • /
    • pp.143-150
    • /
    • 2004
  • In this paper, a recursive digital filter realization for an ionospheric channel model is proposed. This realization is in the form of a cascade of identical second-order all-pass filters, and is determined by only three parameters; two coefficients of an all-pass section, and the number of sections. The values of these parameters are optimized by a nonlinear optimization algorithm called the "downhill simplex method", so that the resulting time delay function closely approximates that of the ionospheric channel model. Comparing with the nonrecursive digital filter realization, it can be shown that the proposed recursive-digital-filter-realization is advantageous in points of view for the numbers of filter coefficients and the realization.

  • PDF

PC-based Processing of Shallow Marine Multi-channel Seismic Data (PC기반의 천해저 다중채널 탄성파 자료의 전산처리)

  • 공영세;김국주
    • 한국해양학회지
    • /
    • v.30 no.2
    • /
    • pp.116-124
    • /
    • 1995
  • Marine, shallow seismic data have been acquired and processed by newly developed multi-channel(6 channel), PC-based digital recording and processing system. The digital processing system includes pre-processing, swell-compensation filter, frequency filter, gain correction, deconvolution, stacking, migration, and plotting. The quality of processed sections is greatly enhanced in terms of signal-to-noise ratio and vertical/horizontal resolution. The multi-channel, digital recording, acquisition and processing system proved to be and economical, efficient and easy-to-use marine shallow seismic tool.

  • PDF

3D Flow Simulation in the Meandering Natural Channel (사행 자연수로에서의 3차원 흐름 모의)

  • Son, Min-Woo;Baek, Kyoung-Oh;Kim, Sang-Ug
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1661-1665
    • /
    • 2006
  • In a natural river, cross sections of a channel vary according to inner or outer parts of meandering. Generally, depth of outer parts is deeper than that of inner parts. This kind of cross section change by meandering can be demonstrated by Beta distribution. The objects of this research is a 3D simulation of primary and secondary flow in the meandering natural channel. FLOW-3D program, a numerical model using CFD technique, and LES method was used for this research. 3D simulations were conducted in the channels having Beta distribution cross sections which have beds of mortar, gravel and vegetation. Two types of water stages and discharge were applied to each channel. In this research, primary flows are located in the outer parts of a top of bend and secondary flows rotate in the bottom on outer parts.

  • PDF

Simulation of Moving Storm in a Watershed Using Distributed Models

  • Choi, Gye-Woon;Lee, Hee-Seung;Ahn, Sang-Jin
    • Korean Journal of Hydrosciences
    • /
    • v.5
    • /
    • pp.1-16
    • /
    • 1994
  • In this paper distributed models for simulating spatially and temporally varied moving storm in a watershed were developed. The complete simulation in a watershed is achieved through two sequential flow simulations which are overland flow simulation and channel network flow simulation. Two dimensional continuity equation and momentum equation of kinematic approximation were used in the overland flow simulation. On the other hand, in the channel network simulation two types of governing equations which are one dimensional continuity and momentum equations between two adjacent sections in a channel, and continuity and energy equations at a channel junction were applied. The finite difference formulations were used in the channel network model. Macks Creek Experimental Watershed in Idaho, USA was selected as a target watershed and the moving storm on August 23, 1965, which continued from 3:30 P.M. to 5:30 P.M., was utilized. The rainfall intensity fo the moving storm in the watershed was temporally varied and the storm was continuously moved from one place to the other place in a watershed. Furthermore, runoff parameters, which are soil types, vegetation coverages, overland plane slopes, channel bed slopes and so on, are spatially varied. The good agreement between the hydrograph simulated using distributed models and the hydrograph observed by ARS are Shown. Also, the conservations of mass between upstreams and downstreams at channel junctions are well indicated and the wpatial and temporal vaiability in a watershed is well simulated using suggested distributed models.

  • PDF

Stiffening evaluation of flat elements towards stiffened elements under axial compression

  • Manikandan, P.;Arun, N.
    • Advances in Computational Design
    • /
    • v.3 no.1
    • /
    • pp.71-86
    • /
    • 2018
  • Thin-walled cross-sections can be optimized to enhance their resistance and progress their behaviour, leading to more competent and inexpensive structural system. The aim of this study is to afford a methodology that would facilitate progress of optimized cold formed steel (CFS) column section with maximum ultimate strength for practical applications. The proposed sections are designed to comply with the geometrical standards of pre-qualified column standards for CFS structures as well as with the number of industrialized and practical constraints. The stiffening evaluation process of CFS lipped channel columns, a five different cross section are considered. The experimental strength and behaviour of the proposed sections are verified by using the finite element analysis (FEA). A series comprehensive parametric study is carried out covering a wide range of section slenderness and overall slenderness ratio of the CFS column with and without intermediate web stiffeners. The ultimate strength of the sections is determined based on the Direct Strength Specification and other design equation available from the literature for CFS structures. A modified design method is proposed for the DSM specification. The results indicate that the CFS column with complex edge and intermediate web stiffeners provides an ultimate strength which is up to 78% higher than standard optimized shapes with the same amount of cross sectional area.

Floral Changes During Three Years After Cheonggyecheon Restoration (청계천 복원 후 3년간 식물상 변화)

  • Kim, Hyeong-Guk;Koo, Bon-Hak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.6
    • /
    • pp.107-115
    • /
    • 2010
  • This study was surveyed to identify changes of flora during three years after restoration in Cheonggyecheon stream. There are four sections in Cheonggyecheon. One and two sections are upper streams and three and four sections are down streams. It was surveyed 328 species in 2006. In 2007 and 2008, 446 and 444 species were found, respectively. This result shows that Cheonggyecheon is unstable initial condition in restored stream ecosystem. Naturalized species were 58 species in 2006 and it was respectively 61 and 63 species in 2007 and 2008. Hazard species of ecosystem were three common species during survey period. In appearance of flora per section, three and four sections constituted by natural sites such as point bars, wide flood plains, riffles and ponds, marshes, etc. were surveyed more species than one and two constructed by concrete materials and narrow flow channel. Recently, as time goes by, introduced species are being increased. And succession has mainly been progressed by one year or binary herbs and perennial herbs. Compared with other restored streams, Cheonggyecheon showed more flora than Yangjaecheon and Anyangcheon. It is judged owing to length of surveyed site, various planted species and area of inhabitation space. To manage restored stream ecosystem, monitoring is essential. Further, because change of vegetation after restoration in Cheonggyecheon is very important, continuous monitoring about Flora and Naturalized species and Hazard species of ecosystem is also very important.

One-dimensional Hydraulic Modeling of Open Channel Flow Using the Riemann Approximate Solver - Application for Natural River (Riemann 해법을 이용한 1차원 개수로 수리해석 - 자연하도 적용)

  • Kim, Ji-Sung;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.4
    • /
    • pp.271-279
    • /
    • 2009
  • The objective of this study is to develop the scheme to apply one-dimensional finite volume method (FVM) to natural river with complex geometry. In the previous study, FVM using the Riemann approximate solver was performed successfully in the various cases of dam-break, flood propagation, etc. with simple and rectangular cross-sections. We introduced the transform the natural into equivalent rectangular cross-sections. As a result of this way, the momentum equation was modified. The accuracy and applicability of newly developed scheme are demonstrated by means of a test example with exact solution, which uses triangular cross-sections. Secondly, this model is applied to natural river with irregular cross-sections and non-uniform lengths between cross-sections. The results shows that the aspect of flood propagation, location and height of hydraulic jump, and numerical solutions of maximum water level are in good agreement with the measured data. Using the developed scheme in this study, existing numerical schemes conducted in simple cross-sections can be directly applied to natural river without complicated numerical treatment.