• Title/Summary/Keyword: channel scheduling

Search Result 337, Processing Time 0.035 seconds

Exploiting Multi-Hop Relaying to Overcome Blockage in Directional mmWave Small Cells

  • Niu, Yong;Gao, Chuhan;Li, Yong;Su, Li;Jin, Depeng
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.364-374
    • /
    • 2016
  • With vast amounts of spectrum available in the millimeter wave (mmWave) band, small cells at mmWave frequencies densely deployed underlying the conventional homogeneous macrocell network have gained considerable interest from academia, industry, and standards bodies. Due to high propagation loss at higher frequencies, mmWave communications are inherently directional, and concurrent transmissions (spatial reuse) under low inter-link interference can be enabled to significantly improve network capacity. On the other hand, mmWave links are easily blocked by obstacles such as human body and furniture. In this paper, we develop a multi-hop relaying transmission (MHRT) scheme to steer blocked flows around obstacles by establishing multi-hop relay paths. In MHRT, a relay path selection algorithm is proposed to establish relay paths for blocked flows for better use of concurrent transmissions. After relay path selection, we use a multi-hop transmission scheduling algorithm to compute near-optimal schedules by fully exploiting the spatial reuse. Through extensive simulations under various traffic patterns and channel conditions, we demonstrate MHRT achieves superior performance in terms of network throughput and connection robustness compared with other existing protocols, especially under serious blockage conditions. The performance ofMHRT with different hop limitations is also simulated and analyzed for a better choice of the maximum hop number in practice.

Resource Reallocation Algorithm for Layered Video Multicast (계층적 비디오 멀티캐스트를 위한 자원 재할당 알고리즘)

  • Yun, Jiun;Park, Dong Chan;Hwang, Sung Sue;Kim, Min Ki;Kim, Suk Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.5
    • /
    • pp.293-301
    • /
    • 2014
  • It has been grown interests ot the convergence services about broadcasting and multicasting services such as Mobile IPTV. It needs the efficient scheduling and resource allocation algorithm because video contents have the large data. This paper proposes the resource allocation algorithm for the layered-encoded video coding in the multicasting services. Existing approaches only deal with the utility maximization in the current video frames. However, these algorithms have a problem for the Quality of Services(QoS) if the user's channel states are not good. We apply the delay constraint and find to maximize the utility values using the current content's frames and already assigned content's frames within the constraint periods. The performance of the proposed algorithm is evaluated by the higher layer transmission rates compared the existing algorithm and significantly improved for the QoS.

Robust Wireless Sensor and Actuator Network for Critical Control System (크리티컬한 제어 시스템용 고강건 무선 센서 액추에이터 네트워크)

  • Park, Pangun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1477-1483
    • /
    • 2020
  • The stability guarantee of wireless network based control systems is still challenging due to the lossy links and node failures. This paper proposes a hierarchical cluster-based network protocol called robust wireless sensor and actuator network (R-WSAN) by combining time, channel, and space resource diversity. R-WSAN includes a scheduling algorithm to support the network resource allocation and a control task sharing scheme to maintain the control stability of multiple plants. R-WSAN was implemented on a real test-bed using Zolertia RE-Mote embedded hardware platform running the Contiki-NG operating system. Our experimental results demonstrate that R-WSAN provides highly reliable and robust performance against lossy links and node failures. Furthermore, the proposed scheduling algorithm and the task sharing scheme meet the stability requirement of control systems, even if the controller fails to support the control task.

Improved ErtPS Scheduling Algorithm for AMR Speech Codec with CNG Mode in IEEE 802.16e Systems (IEEE 802.16e 시스템에서의 CNG 모드 AMR 음성 코덱을 위한 개선된 ErtPS 스케줄링 알고리즘)

  • Woo, Hyun-Je;Kim, Joo-Young;Lee, Mee-Jeong
    • The KIPS Transactions:PartC
    • /
    • v.16C no.5
    • /
    • pp.661-668
    • /
    • 2009
  • The Extended real-time Polling Service (ErtPS) is proposed tosupport QoS of VoIP service with silence suppression which generates variable size data packets in IEEE 802.16e systems. If the silence is suppressed, VoIP should support Comfort Noise Generation (CNG) which generates comfort noise for receiver's auditory sense to notify the status of connection to the user. CNG mode in silent-period generates a data with lower bit rate at long packet transmission intervals in comparison with talk-spurt. Therefore, if the ErtPS, which is designed to support service flows that generate data packets on a periodic basis, is applied to silent-period, resources of the uplink are used inefficiently. In this paper, we proposed the Improved ErtPS algorithm for efficient resource utilization of the silent-period in VoIP traffic supporting CNG. In the proposed algorithm, the base station allocates bandwidth depending on the status of voice at the appropriate interval by havingthe user inform the changes of voice status. The Improved ErtPS utilizes the Cannel Quality Information Channel (CQICH) which is an uplink subchannel for delivering quality information of channel to the base station on a periodic basis in 802.16e systems. We evaluated the performance of proposed algorithm using OPNET simulator. We validated that proposed algorithm improves the bandwidth utilization of the uplink and packet transmission latency

The Medium Access Scheduling Scheme for Efficient Data Transmission in Wireless Body Area Network (WBAN 환경에서 효율적 데이터 전송을 위한 매체 접근 스케줄링 기법)

  • Jang, EunMee;Park, TaeShin;Kim, JinHyuk;Choi, SangBan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.2
    • /
    • pp.16-27
    • /
    • 2017
  • IEEE 802.15.6 standard, a Wireless Body Area Network, aims to transfer not only medical data but also non-medical data, such as physical activity, streaming, multimedia game, living information, and entertainment. Services which transfer those data have very various data rates, intervals and frequencies of continuous access to a medium. Therefore, an efficient anti-collision operations and medium assigning operation have to be carried out when multiple nodes with different data rates are accessing shared medium. IEEE 802.15.6 standard for CSMA/CA medium access control method distributes access to the shared medium, transmits a control packet to avoid collision and checks status of the channel. This method is energy inefficient and causes overhead. These disadvantages conflict with the low power, low cost calculation requirement of wireless body area network, shall minimize such overhead for efficient wireless body area network operations. Therefore, in this paper, we propose a medium access scheduling scheme, which adjusts the time interval for accessing to the shared transmission medium according to the amount of data for generating respective sensor node, and a priority control algorithm, which temporarily adjusts the priority of the sensor node that causes transmission concession due to the data priority until next successful transmission to ensure fairness.

An Efficient 2D Discrete Wavelet Transform Filter Design Using Lattice Structure (Lattice 구조를 갖는 효율적인 2차원 이산 웨이블렛 변환 필터 설계)

  • Park, Tae-Geun;Jeong, Seon-Gyeong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.6
    • /
    • pp.59-68
    • /
    • 2002
  • In this paper, we design the two-dimensional Discrete Wavelet Transform (2D DWT) filter that is widely used in various applications such as image compression because it has no blocking effects and relatively high compression rate. The filter that we used here is two-channel four-taps QMF(Quadrature Mirror Filter) Lattice filter with PR (Perfect Reconstruction) property. The proposed DWT architecture, with two consecutive inputs shows an efficient performance with a minimum of such hardware resources as multipliers, adders, and registers due to a simple scheduling. The proposed architecture was verified by the RTL simulation, and utilizes the hardware 100%. Our architecture shows a relatively high performance with a minimum hardware when compared with other approaches. An efficient memory mapping and address generation techniques are introduced and the fixed-point arithmetic analysis for minimizing the PSNR degradation due to quantization is discussed.

A Communication Platform for Mobile Group Peer-to-Peer Services (모바일 그룹 P2P 응용 서비스를 위한 통신 플랫폼)

  • Song, Ji-Hwan;Kang, Kyung-Ran;Cho, Young-Jong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.4
    • /
    • pp.389-400
    • /
    • 2008
  • As the wireless network technologies and the capability of the mobile terminals are evolving, advanced peer to peer applications for mobile users are attracting interests. In this paper, we propose the mobile P2P communication platform(MPCP) which provides transparency to the wireless network technologies and solutions to the limited resources of the mobile terminals. MPCP classifies the connection into two levels: a virtual channel and a session. A virtual channel is the network layer connection between the terminals whereas a session is the application layer connection. MPCP classifies the sessions into four types and applies different scheduling priority and data processing policies such as segmentation and reassembly. It selects proper wireless network technologies depending on the distance between the communication endpoints. To acquire dynamically changed access address, we harness the Session Initiation Protocol. We implemented MPCP on embedded Linux simulator and utilized the implementation in mobile P2P service development. For the quantitative analysis, we compared the performance of MPCP with that of ftp. Regardless of the number of simultaneous sessions, MPCP maintains the relative performance.

Symbol Based Rate Adaptation in Coded MIMO-OFDM Systems (심볼 기반의 적응 변조 기법을 이용한 채널 부호화된 MIMO-OFDM 시스템)

  • Sung, Chang-Kyung;Kim, Ji-Hoon;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1A
    • /
    • pp.50-58
    • /
    • 2008
  • The use of space-division multiple access(SDMA) in the downlink of multiuser multi-input/multi-output(MIMO) wireless transmission systems can provide substantial gains in system throughput. When the channel state information(CSI) is available at the transmitter, a considerable performance improvement can be attained by adapting the transmission rates to the reported CSI. In addition, to combat frequency selective fadings in wideband wireless channels, bit-interleaved coded OFDM(BIC-OFDM) modulation schemes are employed to provide reliable packet delivery by utilizing frequency diversity through channel coding. In this paper, we propose an adaptive modulation and coding(AMC) scheme combined with an opportunistic scheduling technique for the MIMO BIC-OFDM with bandwidth-limited feedback channels. The proposed scheme enhances the link performance by exploiting both the frequency diversity and the multiuser diversity. To reduce the feedback information, the proposed AMC scheme employs rate adaptation methods based on an OFDM symbol rather than on the whole subchannels. Simulation results show that the proposed scheme exhibits a substantial performance gain with a reasonable complexity over single antenna systems.

A Distributed Spatial Indexing Technique based on Hilbert Curve and MBR for k-NN Query Processing in a Single Broadcast Channel Environment (단일방송채널환경에서 k-최근접질의 처리를 위한 힐버트 곡선과 최소영역 사각형 기반의 분산 공간 인덱싱 기법)

  • Yi, Jung-Hyung;Jung, Sung-Won
    • Journal of KIISE:Databases
    • /
    • v.37 no.4
    • /
    • pp.203-208
    • /
    • 2010
  • This paper deals with an efficient index scheduling technique based on Hilbert curve and MBR for k-NN query in a single wireless broadcast channel environment. Previous works have two major problems. One is that they need a long time to process queries due to the back-tracking problem. The other is that they have to download too many spatial data since they can not reduce search space rapidly. Our proposed method broadcasts spatial data based on Hilbert curve order where a distributed index table is also broadcast with each spatial data. Each entry of index table represents the MBR which groups spatial data. By predicting the unknown location of spatial data, our proposed index scheme allows mobile clients to remove unnecessary data and to reduce search space rapidly. As a result, our method gives the decreased tuning time and access latency.

A New Type of Differential Fault Analysis on DES Algorithm (DES 알고리즘에 대한 새로운 차분오류주입공격 방법)

  • So, Hyun-Dong;Kim, Sung-Kyoung;Hong, Seok-Hie;Kang, Eun-Sook
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.6
    • /
    • pp.3-13
    • /
    • 2010
  • Differential Fault Analysis (DFA) is widely known for one of the most efficient method analyzing block cipher. In this paper, we propose a new type of DFA on DES (Data Encryption Standard). DFA on DES was first introduced by Biham and Shamir, then Rivain recently introduced DFA on DES middle rounds (9-12 round). However previous attacks on DES can only be applied to the encryption process. Meanwhile, we first propose the DFA on DES key-schedule. In this paper, we proposed a more efficient DFA on DES key schedule with random fault. The proposed DFA method retrieves the key using a more practical fault model and requires fewer faults than the previous DFA on DES.