• 제목/요약/키워드: channel error

검색결과 2,470건 처리시간 0.031초

최적의 FEC 부호율 결정을 위한 정확한 채널손실 한계집합 추정기법 (An Accurate Estimation of Channel Loss Threshold Set for Optimal FEC Code Rate Decision)

  • 정태준;정요원;서광덕
    • 방송공학회논문지
    • /
    • 제19권2호
    • /
    • pp.268-271
    • /
    • 2014
  • 소스 부호 왜곡 모델 및 채널 유도 왜곡 모델 기반의 기존의 FEC 부호율 결정 기법들은 일반적으로 높은 계산 복잡도와 구현 비용을 요구하는 모델 파라메터 트레이닝 과정을 요구한다. 본 논문에서는 복잡한 모델링 과정을 피하기 위해서 최적의 FEC 부호율 결정을 위한 채널 손실 한계집합을 추정하기 위한 정확한 소스-채널 결합 왜곡 모델을 제안한다.

Impact of Channel Estimation Errors on BER Performance of Single-User Decoding NOMA System

  • Chung, Kyuhyuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제12권4호
    • /
    • pp.18-25
    • /
    • 2020
  • In the fifth generation (5G) and beyond 5G (B5G) mobile communication, non-orthogonal multiple access (NOMA) has attracted great attention due to higher spectral efficiency and massive connectivity. We investigate the impacts of the channel estimation errors on the bit-error rate (BER) of NOMA, especially with the single-user decoding (SUD) receiver, which does not perform successive interference cancellation (SIC), in contrast to the conventional SIC NOMA scheme. First, an analytical expression of the BER for SUD NOMA with channel estimation errors is derived. Then, it is demonstrated that the BER performance degrades severely up to the power allocation less than about 20%. Additionally, we show that for the fixed power allocation of 10% in such power allocation range, the signal-to-noise (SNR) loss owing to channel estimation errors is about 5 dB. As a consequence, the channel estimation error should be considered for the design of the SUD NOMA scheme.

Alternating-Projection-Based Channel Estimation for Multicell Massive MIMO Systems

  • Chen, Yi Liang;Ran, Rong;Oh, Hayoung
    • Journal of information and communication convergence engineering
    • /
    • 제16권1호
    • /
    • pp.17-22
    • /
    • 2018
  • In massive multiple-input multiple-output (MIMO) systems, linear channel estimation algorithms are widely applied owing to their simple structures. However, they may cause pilot contamination, which affects the subsequent data detection performance. Therefore, herein, for an uplink multicell massive multiuser MIMO system, we consider using an alternating projection (AP) for channel estimation to eliminate the effect of pilot contamination and improve the performance of data detection in terms of the bit error rates as well. Even though the AP is nonlinear, it iteratively searches the best solution in only one dimension, and the computational complexity is thus modest. We have analyzed the mean square error with respect to the signal-to-interference ratios for both the cooperative and non-cooperative multicell scenarios. From the simulation results, we observed that the channel estimation results via the AP benefit the following signal detection more than that via the least squares for both the cooperative and non-cooperative multicell scenarios.

Sliding Window and Successive Cancellation Channel Estimation Schemes based on Pilot Spread Code in DS-UWB System

  • Wang, Yupeng;Kim, Jung-Ju;Chang, Kyung-Hi
    • 한국통신학회논문지
    • /
    • 제30권10A호
    • /
    • pp.949-957
    • /
    • 2005
  • In this paper, the performances of a single-user DS-UWB system applying two simple proposed channel estimation schemes are introduced, according to the newly updated DS-UWB PHY Layer standard from IEEE P802.15.3a. The performances of error control coding, different combining schemes in selective Rake receiver for DS-UWB system are analyzed. Both of the two channel estimation schemes using data-independent structure work well in DS-UWB system with few pilot bits. For the purpose of channel estimation and reduces the number of pilot bits, we apply a pilot symbol spreaded with $2{^8}-1\;or\;2{^9}-1$ periods of m-sequence for different channel estimation schemes.

HOS를 이용한 통신 채널의 역 모델링에 관한 연구 (A study on the iverse modeling of communication channel by HOS)

  • 임성각;진용옥
    • 한국통신학회논문지
    • /
    • 제21권5호
    • /
    • pp.1274-1282
    • /
    • 1996
  • This paper deals with an inverse modeling of nonminimum phase communication channel utilizing the HOS (High Order Statistics) of the received signal. After the communication channel is separated into the minimum phase and maximum phase components, the inverse modeling is performed independently. The performance superiority is confirmed by monte-carlo computer simulation in comparison with the traditional CMA (Constant Modulus Algorithm) method. By utilizing the proposed algorithm employing the HOS of the received signal, the inverse frequency characteristics of the channel can be obtained withoug transmitted signal in digital communication. This algorithm is required in preprocessing or postprocessing in order to remove the channel effect, and effective in the self adaptive equalizer which can minimize the bit error rate or symbol error rate in the recovry of received signal.

  • PDF

Theoretical Derivation of Minimum Mean Square Error of RBF based Equalizer

  • Lee Jung-Sik
    • 한국통신학회논문지
    • /
    • 제31권8C호
    • /
    • pp.795-800
    • /
    • 2006
  • In this paper, the minimum mean square error(MSE) convergence of the RBF equalizer is evaluated and compared with the linear equalizer based on the theoretical minimum MSE. The basic idea of comparing these two equalizers comes from the fact that the relationship between the hidden and output layers in the RBF equalizer is also linear. As extensive studies of this research, various channel models are selected, which include linearly separable channel, slightly distorted channel, and severely distorted channel models. In this work, the theoretical minimum MSE for both RBF and linear equalizers were computed, compared and the sensitivity of minimum MSE due to RBF center spreads was analyzed. It was found that RBF based equalizer always produced lower minimum MSE than linear equalizer, and that the minimum MSE value of RBF equalizer was obtained with the center spread which is relatively higher(approximately 2 to 10 times more) than variance of AWGN. This work provides an analytical framework for the practical training of RBF equalizer system.

레일레이 페이딩 채널에서 하이브리드 확산대역 시스팀의 성능 (Performance of hybrid spead spectrum systems in rayleigh fading channel)

  • 조현욱;박상규
    • 한국통신학회논문지
    • /
    • 제21권8호
    • /
    • pp.2023-2032
    • /
    • 1996
  • In this paper, we calculate average bit error probabilities of asynchronous hybrid DS/FH-SSMA systems in AWGN chnnel and nonselective Rayleigh fading channel. We analyze and compare the performance of systems in AWGN channel and Rayleigh fading channel by using linear correlation receiver and hard limiting correlation receiver(nonlinear correlation receiver). Binary PSK scheme is considered and random spreading code sequences and random hopping patterns are used. Bit error probabilities of the systems with/without near-far problem under the same bandwidth expansion are calculated. the result shows that the performance of hard limiting correlation receiver is better than that of linear correlation receiver over nonselective Rayleigh fading channel.

  • PDF

레일리 위성 리턴링크 채널에서 FEC 부호 방식 성능분석 (A Performance Analysis of FEC Coding Method in Rayleigh Satellite Return Link Channel)

  • 이성로;조성의;오덕길
    • 한국통신학회논문지
    • /
    • 제29권12C호
    • /
    • pp.1633-1641
    • /
    • 2004
  • 위성 디지털 방송이나 위성 인터넷에서는 위성에서 단말에 이르는 고속 리턴 채널 환경이 매우 나빠 연집오류가 심하게 생긴다. 이 논문에서는 리턴 채별이 레일리 확률 채널일 때, 앞 오류 고침 (forward error correction: FEC) 부호화 방식의 성능을 분석한다. 먼저, Loo, Lutz, Vucetic, Corazza의 채별 모형을 고찰하고, Rayleigh 페이딩 채널에서 길쌈 부호, 리드 솔로몬 부호, 길쌈-리드 솔로몬 연접 부호 터보 부호의 성능을 비교 분석한다.

Analysis on Bit Error Rate Performance of Negatively Asymmetric Binary Pulse Amplitude Modulation Non-Orthogonal Multiple Access in 5G Mobile Networks

  • Chung, Kyuhyuk
    • International Journal of Advanced Culture Technology
    • /
    • 제9권4호
    • /
    • pp.307-314
    • /
    • 2021
  • Recently, positively asymmetric binary pulse amplitude modulation (2PAM) has been proposed to improve the bit error rate (BER) performance of the weak channel gain user, with a tolerable BER loss of the strong channel gain user, for non-orthogonal multiple access (NOMA). However, the BER loss of the stronger channel gain user is inevitable in such positively asymmetric 2PAM NOMA scheme. Thus, we propose the negatively asymmetric 2PAM NOMA scheme. First, we derive closed-form expressions for the BERs of the negatively asymmetric 2PAM NOMA. Then, simulations demonstrate that for the stronger channel gain user, the BER of the proposed negatively asymmetric 2PAM NOMA improves, compared to that of the conventional positively asymmetric 2PAM NOMA. Moreover, we also show that for the weaker channel gain user, the BER of the proposed negatively asymmetric 2PAM NOMA is comparable to that of the conventional positively asymmetric 2PAM NOMA, over the power allocation range less than about 10 %.

An improved sparsity-aware normalized least-mean-square scheme for underwater communication

  • Anand, Kumar;Prashant Kumar
    • ETRI Journal
    • /
    • 제45권3호
    • /
    • pp.379-393
    • /
    • 2023
  • Underwater communication (UWC) is widely used in coastal surveillance and early warning systems. Precise channel estimation is vital for efficient and reliable UWC. The sparse direct-adaptive filtering algorithms have become popular in UWC. Herein, we present an improved adaptive convex-combination method for the identification of sparse structures using a reweighted normalized leastmean-square (RNLMS) algorithm. Moreover, to make RNLMS algorithm independent of the reweighted l1-norm parameter, a modified sparsity-aware adaptive zero-attracting RNLMS (AZA-RNLMS) algorithm is introduced to ensure accurate modeling. In addition, we present a quantitative analysis of this algorithm to evaluate the convergence speed and accuracy. Furthermore, we derive an excess mean-square-error expression that proves that the AZA-RNLMS algorithm performs better for the harsh underwater channel. The measured data from the experimental channel of SPACE08 is used for simulation, and results are presented to verify the performance of the proposed algorithm. The simulation results confirm that the proposed algorithm for underwater channel estimation performs better than the earlier schemes.