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Abstract

In massive multiple-input multiple-output (MIMO) systems, linear channel estimation algorithms are widely applied owing to

their simple structures. However, they may cause pilot contamination, which affects the subsequent data detection performance.

Therefore, herein, for an uplink multicell massive multiuser MIMO system, we consider using an alternating projection (AP) for

channel estimation to eliminate the effect of pilot contamination and improve the performance of data detection in terms of the

bit error rates as well. Even though the AP is nonlinear, it iteratively searches the best solution in only one dimension, and the

computational complexity is thus modest. We have analyzed the mean square error with respect to the signal-to-interference

ratios for both the cooperative and non-cooperative multicell scenarios. From the simulation results, we observed that the

channel estimation results via the AP benefit the following signal detection more than that via the least squares for both the

cooperative and non-cooperative multicell scenarios. 

Index Terms: Alternating projection, Channel estimation, Least squares, Multicell massive MIMO

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) via dense

antenna arrays is one of the key technologies of 5G mobile com-

munication systems, which promises high channel capacity, low

energy consumption, etc. and has recently attracted particular

attention [1-3]. However, the performance of massive MIMO

systems is sensitive to the quality of the channel state infor-

mation (CSI). Therefore, obtaining the CSI is particularly

important in massive MIMO systems, as they rely on simple

CSI-dependent detection techniques at a base station (BS) to

eliminate the interference between users (UEs). Pilot

sequences are widely utilized in acquiring the CSI in state-

of-the-art channel estimations. However, employing orthog-

onal pilot sequences in multicell scenarios is challenging.

This is because the length of pilot sequences depends on the

number of cells, and is severely limited by the channel

coherence time. Consequently, UEs who are located in dif-

ferent cells but have to exploit the same pilot sequence

simultaneously are always present, which results in the pol-

lution of channel estimation, known as pilot contamination

[4-7]. A precoding method based on the minimum mean-

squared error (MMSE) is proposed to mitigate the pilot con-

tamination problem in [4]. In [5], the pilot sequence is

shifted and reused in the neighboring cells, resulting in a

more accurate channel estimation. Multicell cooperation is

also considered for reducing the effect of pilot contamination

in [6]. However, [7] indicated that pilot contamination is not

a critical problem of large antenna array systems, but merely

a shortcoming caused by some linear channel estimation
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algorithms such as least squares (LS) [8] and MMSE [4].

The shortcoming can be easily overcome by using a nonlin-

ear channel estimation algorithm, e.g., blind pilot decontami-

nation [9]. However, most nonlinear channel estimation

algorithms suffer from a curse of computational complexity

due to the greedy iterative searching manner. 

Therefore, herein, we consider the alternative projection

(AP) algorithm, which was originally proposed for localizing

multiple sources [10]. We employed the AP to estimate the

channel information as it can provide near-optimum perfor-

mance with an acceptable computational complexity. Fur-

thermore, we analyzed the mean square errors with respect

to the signal-to-interference ratio (SIR) for both the non-

cooperative and cooperative multicell scenarios. 

The paper is organized as follows: in Section II, we briefly

introduce a generic multicell massive MIMO system. In Sec-

tion III, we state the process of channel estimation via the

AP, and analyze the mean square error (MSE) in terms of the

SIR for both the cooperative and non-cooperative multicell

scenarios. Finally, the simulation results are shown in Sec-

tion IV, and the conclusions are presented in Section V. 

II. SYSTEM MODEL

We consider an uplink multicell massive MIMO system in

which a target cell exists with L number of interfering cells.

For each cell, the BS employs M number of receiver anten-

nas, and each UE employs K number of transmit antennas.

For simplicity, we consider only one UE for each cell, and

the received signal at the BS of the target cell is given as 

, (1)

where  denotes the received signal matrix, P is the

power used by the target UE for transmitting the information

signal (or pilot signal) , where T denotes the trans-

mission duration (or the length of pilot sequences), and

 is the information signal (or pilot signal) trans-

mitted by one UE located at the ith interfering cell using the

power I.  describes the noise matrix in which each

entry is a Gaussian distribution with a zero mean and vari-

ance of σ2.  and  are the channel matri-

ces from the UE of the target cell and the UE of the ith

interfering cell to the BS of the target cell, respectively.

If X and Xi are different and orthogonal pilot signals, the

channel matrix H can be easily estimated via a linear process

as 

. (2)

The estimated channel will be employed for the follow-

ing information signal detection. If the UEs of the target and

interfering cells are using the same pilot sequence because of

the lack of orthogonal pilot sequences, i.e., X = Xi, the esti-

mated channel  is populated by L number of interfering

channel matrices, i.e.,

(3)

where  and XH represents the Hermitian of

X. This kind of phenomenon is known as pilot contamina-

tion [4]. However, we noticed that this problem merely

results from the orthogonality constraint required by the lin-

ear channel estimation algorithm. If nonlinear algorithms

that do not require pilot sequences are employed for channel

estimation, the problem will no longer be the primary one. 

III. BLIND CHANNEL ESTIMATION VIA 

ALTERNATIVE PROJECTION

A. Alternative Projection Algorithm 

AP was first proposed in [10] for locating multiple

sources. It can provide similar performance as maximum

likelihood (ML). Moreover, since it converts a nonlinear

multivariate optimization problem into a single-variate opti-

mization problem, it requires only an acceptable computa-

tional complexity. Therefore, it can be an alternative for

channel estimation to achieve an elegant tradeoff between

performance and complexity. The AP algorithm for channel

estimation is primarily summarized as follows:

1.Calculate the covariance matrix 

where yt is the t
th column vector of Y given in (1); 

2.Use singular value decomposition (SVD) for the covari-

ance matrix to achieve its eigenvalues λi and eigenvec-

tors μi;

3. Initialize ;

4. For the ith iteration do 

5. End

The resulting channel matrix  will be presented in the

following signal detection. Further details of the AP algo-

rithm can be found in [10]. 

Compared to ML, which is optimal but computationally

expensive owing to its exhaustive multidimensional search-

ing, the AP-based algorithm significantly reduces computa-

tional complexity as it is a simple one-dimensional searching

problem. Unlike [11], which only focused on cooperative
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multicell massive MIMO systems, we herein analyze the

MSE with respect to the SIR for both the cooperative and

non-cooperative multicell massive MIMO systems. 

B. Cooperative Multicell Scenarios

In a multicell BS cooperation mode such as coordinated

multiple points (CoMP) in LTE-A systems [12], all BSs can

exchange their information about channel states and data

such that the interfering BSs do not exist. In this case, we

can rewrite the system model in (1) as

(4)

by defining

and

.

The analysis of the AP performance is not straightforward.

However, assuming that the noise N satisfies the Gaussian distri-

bution, the performance of the AP algorithm approaches ML

[10]. Therefore, we can analyze the ML instead of the AP

itself to obtain some insight. For simplicity, we consider

only a single interfering cell; therefore, we achieved our first

lemma for the cooperative multicell massive MIMO systems.

LEMMA 1. The MSE of the cooperative system model in

(4) is approximated as 

, (5)

where SIR = P/I refers to the SIR.

Proof: According to [8], with a known pilot sequence, the

performance of ML is identical to that of the LS. Therefore,

the channel estimation results can be described as 

. (6)

MSE is thus given by

, (7)

where E(A) denotes the expectation of A. Let N1 =  and

N2 = ; therefore, we have the following approxima-

tion:

. (8)

If T is sufficiently large, we can use the approximation

given as

,

where IK is a K × K identity matrix, which results in another

two approximations:

and

.

Substituting the results above into (8), we can conclude

Lemma 1. 

We noticed that the MSE in (5) is a non-decreasing func-

tion when the SIR is larger than one, but a non-increasing

function when the SIR is less than one. This implies that the

AP algorithm can benefit from an interfering user closed to

the targeted BS with a relatively large interfering power in a

cooperative multicell scenario. 

C. Non-cooperative Multicell Scenarios

In this scenario, the interference embodied in the second

term of (1) is treated as additional noise. We can then rewrite

(1) as 

, (9)

where .

We can still employ the AP algorithm in estimating the

channel information and derive the second lemma for a non-

cooperative multicell scenario.

LEMMA 2. The MSE of the non-cooperative system model

in (9), considering one interfering cell, is approximated as 

. (10)

Proof: Similarly, the MSE is computed via 
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where (a) is because the channel matrix H1, the signal matrix

X, and the noise matrix N are independent, and (b) is

because of the assumption that all entries of the channel

matrix H1 are i.i.d Gaussian distribution with zero mean and

unit variance. Clearly, (10) is a non-increasing function with

respect to the SIR. Therefore, we argue that the AP algo-

rithm can perform well since the interfering cell, in general,

is far away from the target cell, resulting in a relatively

small interference power.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, we consider a two-cell massive MIMO sys-

tem for simplicity, and a zero-forcing (ZF) detector is

employed for the following information signal detection. The

conventional LS algorithm is applied to provide a baseline

for performance comparison.

Fig. 1 provides a performance comparison in terms of the

bit error rates (BER) between ZF incorporated with CSI

achieved via the AP, and ZF with perfect CSI for the mas-

sive MIMO system, in which M = 16 and K = 4. With the

condition that M > 2K, ZF with perfect CSI can approach an

optimal performance [8]. In Fig. 1, we observe that ZF

incorporated with CSI achieved via the AP performs as well

as ZF incorporated with perfect CSI, which confirms again

that with the Gaussian noise assumption, the AP can

approach the optimal channel estimation.

In Fig. 2, we compare the performances of ZF incorpo-

rated with AP-based CSI and that incorporated with LS-

based CSI for a cooperative multicell scenario. We observe

that both the AP-based ZF and the LS-based ZF suffer from

low interfering power. This is because, in cooperation sce-

narios, the interfering power contributes to channel estima-

tion and signal detection as well as the transmitting power

used by the user of the target cell. Therefore, the higher the

interfering power, the better is the performance, which is

also consistent with Lemma 1. Furthermore, we conclude

that the AP-based channel estimation outperforms the LS-

based channel estimation since the data detection is very

sensitive to the channel information, while ZF with the AP-

based channel estimation achieves better performance com-

pared to that with the LS-based channel estimation, as illus-

trated in Fig. 2.

In Figs. 3 and 4, we compare the BER performances

between ZF incorporated with the AP-based channel estima-

tion, and ZF incorporated with the LS-based channel estima-

tion in a non-cooperative multicell scenario for M = 16 and

M = 20, respectively. In the non-cooperative multicell sce-

Fig. 2. Performance comparison between ZF with CSI via AP and ZF with
CSI via LS for different interfering power levels in a cooperative scenario.

Fig. 1. Performance comparison between ZF with AP-based channel
estimation and ZF with perfect CSI.

Fig. 3. BER comparison between ZF with AP and ZF with LS for different
interfering power levels in a non-cooperative scenario for M=16.



Alternating-Projection-Based Channel Estimation for Multicell Massive MIMO Systems

21 http://jicce.org

nario, the signals transmitted by the interfering users are

treated as additional noises. Therefore, we observed that

both ZF with AP-based CSI and ZF with the LS-based CSI

suffer from a larger interfering power and performance loss.

The higher the interfering power, the worse is the perfor-

mance, which confirms the validity of Lemma 2. From the

simulation results, we still notice that the channel estimation

results via the AP are more accurate than those via LS, in

that the former results in a better performance in terms of the

BER.

V. CONCLUSION

Herein, we employed an AP algorithm to estimate the

channel state information for a multicell massive MIMO sys-

tem and studied the mean square error (MSE) with respect to

the SIRs following the LS approach for both the cooperative

and noncooperative multicell scenarios, according to the

argument that the AP performs almost as well as ML, which

is identical to the LS with the Gaussian noise assumption.

Our simulation results show that the AP-based channel esti-

mation is biased for high SIRs in a cooperative scenario, but

unbiased for high SIRs in a non-cooperative scenario. Com-

pared to the LS-based channel estimation, the channel esti-

mation results via the AP are more accurate compared to that

via LS, in that a better performance of the following signal

detection is achieved. 
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