DOI QR코드

DOI QR Code

Analysis on Bit Error Rate Performance of Negatively Asymmetric Binary Pulse Amplitude Modulation Non-Orthogonal Multiple Access in 5G Mobile Networks

  • Received : 2021.10.29
  • Accepted : 2021.12.07
  • Published : 2021.12.31

Abstract

Recently, positively asymmetric binary pulse amplitude modulation (2PAM) has been proposed to improve the bit error rate (BER) performance of the weak channel gain user, with a tolerable BER loss of the strong channel gain user, for non-orthogonal multiple access (NOMA). However, the BER loss of the stronger channel gain user is inevitable in such positively asymmetric 2PAM NOMA scheme. Thus, we propose the negatively asymmetric 2PAM NOMA scheme. First, we derive closed-form expressions for the BERs of the negatively asymmetric 2PAM NOMA. Then, simulations demonstrate that for the stronger channel gain user, the BER of the proposed negatively asymmetric 2PAM NOMA improves, compared to that of the conventional positively asymmetric 2PAM NOMA. Moreover, we also show that for the weaker channel gain user, the BER of the proposed negatively asymmetric 2PAM NOMA is comparable to that of the conventional positively asymmetric 2PAM NOMA, over the power allocation range less than about 10 %.

Keywords

References

  1. E. C. Strinati et al., "6G: The next frontier: From holographic messaging to artificial intelligence using subterahertz and visible light communication," IEEE Veh. Technol. Mag., vol. 14, no. 3, pp. 42-50, Sept. 2019. DOI: https://doi.org/10.1109/MVT.2019.2921162
  2. L. Chettri and R. Bera, "A comprehensive survey on internet of things (IoT) toward 5G wireless systems," IEEE Internet of Things Journal, vol. 7, no. 1, pp. 16-32, Jan. 2020. DOI: https://doi.org/10.1109/JIOT.20 19.2948888
  3. Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K. Higuchi, "Non-orthogonal multiple access (NOMA) for cellular future radio access," in Proc. IEEE 77th Vehicular Technology Conference (VTC Spring), pp. 1-5, 2013. DOI: https://doi.org/10.1109/VTCSpring.2013.6692652
  4. Z. Ding, P. Fan, and H. V. Poor, "Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions," IEEE Trans. Veh. Technol., vol. 65, no. 8, pp. 6010-6023, Aug. 2016. DOI: https://doi.org/10.1109/TVT.2015.2480766
  5. Z. Ding, X. Lei, G. K. Karagiannidis, R. Schober, J. Yuan, and V. Bhargava, "A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends," IEEE J. Sel. Areas Commun., vol. 35, no. 10, pp. 2181-2195, Oct. 2017. DOI: https://doi.org/10.1109/JSAC.2017.2725519
  6. M. Qiu, Y.-C. Huang, and J. Yuan, "Downlink non-orthogonal multiple access without SIC for block fading channels: an algebraic rotation approach," IEEE Trans. Wireless Commun., vol. 18, no. 8, pp. 3903-3918, Aug. 2019. DOI: http://dx.doi.org/10.1109/TWC.2019.2919292
  7. M. Qiu, Y.-C. Huang, J. Yuan and C.-L. Wang, "Lattice-partition-based downlink non-orthogonal multiple access without SIC for slow fading channels," IEEE Trans. Commun., vol. 67, no. 2, pp. 1166-1181, Feb. 2019. DOI: http://dx.doi.org/10.1109/TCOMM.2018.2878847
  8. Z. Dong, H. Chen, J. Zhang and L. Huang, "On non-orthogonal multiple access with finite-alphabet inputs in Z-channels," IEEE J. Sel. Areas Commun., vol. 35, no. 12, pp. 2829-2845, Dec. 2017. DOI: http://dx.doi.org/10.1109/JSAC.2017.2724619
  9. Z. Dong, H. Chen, J. Zhang, L. Huang and B. Vucetic, "Uplink non-orthogonal multiple access with finite-alphabet inputs," IEEE Trans. Wireless Commun., vol. 17, no. 9, pp. 5743-5758, Sept. 2018. DOI: http://dx.doi.org/10.1109/TWC.2018.2849413
  10. K. Chung, "Unipodal 2PAM NOMA without SIC: toward Super Ultra-Low Latency 6G," International Journal of Internet, Broadcasting and Communication (IJIBC), vol. 13, no. 1, pp. 69-81, Feb. 2021. DOI: http://dx.doi.org/10.7236/IJIBC.2021.13.1.69
  11. K. Chung, "Achievable sum rate of NOMA with negatively-correlated Information Sources," International Journal of Advanced Smart Convergence (IJASC), vol. 10, no. 1, pp. 75-81, Mar. 2021. DOI: http://dx.doi.org/10.7236/IJASC.2021.10.1.75
  12. K. Chung, "Near-BER lossless asymmetric 2PAM non-SIC NOMA with low-complexity and low-latency under user-fairness," International Journal of Internet, Broadcasting and Communication (IJIBC), vol. 13, no. 2, pp. 43-51, May. 2021. DOI: http://dx.doi.org/10.7236/IJIBC.2021.13.2.43
  13. K. Chung, "Achievable power allocation interval of rate-lossless non-SIC NOMA for asymmetric 2PAM," International Journal of Advanced Smart Convergence (IJASC), vol. 10, no. 2, pp. 1-9, Jun. 2021. DOI: http://dx.doi.org/10.7236/IJASC.2021.10.2.1
  14. K. Chung, "Quadrature Correlated Superposition Modulation: Practical Perspective of Correlated Superposition Coding," International Journal of Internet, Broadcasting and Communication (IJIBC), vol. 13, no. 3, pp. 17-24, Aug. 2021. DOI: http://dx.doi.org/10.7236/IJIBC.2021.13.3.17
  15. K. Chung, "On Lossless Interval of Low-Correlated Superposition Coding NOMA toward 6G URLLC," International Journal of Internet, Broadcasting and Communication (IJIBC), vol. 13, no. 3, pp. 34-41, Aug. 2021. DOI: http://dx.doi.org/10.7236/IJIBC.2021.13.3.34
  16. K. Chung, "On Inflated Achievable Sum Rate of 3-User Low-Correlated SC NOMA," International Journal of Advanced Smart Convergence (IJASC), vol. 10, no. 3, pp. 1-9, Sept. 2021. DOI: http://dx.doi.org/10.7236/IJASC.2021.10.3.1
  17. K. Chung, "Higher Spectral Efficiency of 3-User Cross CSC NOMA in 5G Systems," International Journal of Advanced Smart Convergence (IJASC), vol. 10, no. 3, pp. 17-25, Sept. 2021. DOI: http://dx.doi.org/10.7236/IJASC.2021.10.3.17
  18. K. Chung, "NOMA for correlated information sources in 5G Systems," IEEE Commun. Lett., vol. 25, no. 2, pp. 422-426, Feb. 2021. DOI: https://doi.org/10.1109/LCOMM.2020.3027726
  19. K. Chung, "Correlated superposition coding: Lossless two-user NOMA implementation without SIC under user-fairness," IEEE Wireless Commun. Lett., vol. 10, no. 9, pp. 1999-2003, Sept. 2021. DOI: https://doi.org/10.1109/LWC.2021.3089996
  20. K. Chung, "Cross-Correlated Quadrature Amplitude Modulation for Non-Orthogonal Multiple Access in 5G Systems," International Journal of Advanced Culture Technology (IJACT), vol. 9, no. 3, pp. 283-290, Sept. 2021. DOI: http://dx.doi.org/10.17703/IJACT.2021.9.3.283