• Title/Summary/Keyword: channel equalizer

Search Result 431, Processing Time 0.028 seconds

Modulation and Pre-equalization Method to minimize time delay in Equalization Digital On-Channel Repeater (등화형 디지털 동일채널 중계기의 시간지연을 최소화하기 위한 변조 및 전치등화 방법)

  • Park Sung-Ik;Kim Heung-Mook;Seo Jae-Hyun;Eum Ho-Min;Lee Yong-Tae;Lee Jae-Young;Lee Soo-In
    • Journal of Broadcast Engineering
    • /
    • v.11 no.2 s.31
    • /
    • pp.229-241
    • /
    • 2006
  • In this paper we propose and analyze a novel modulation and pre-equalization method to minimize signal processing time delay for the Equalization Digital On-Channel Repeater (EDOCR) in ATSC (Advanced Television Systems Committee) terrestrial digital TV system. The proposed modulation method uses Equi-Ripple (ER) filter coefficients instead of conventional Square Root Raised Cosine (SRRC) after coefficients for VSB (Vestigial Side Bands) pulse shaping. And the proposed pre-equalization method calculates pre-equalizer filter coefficients by using baseband signal as reference signal and demodulated repeater output signal, then generates a new VSB pulse shaping filter coefficients by convolutioning ER filter coefficients and pre-equalizer filter coefficients. The newly generated pulse shaping filter does not have minimized time delay by adjusting the number of pre-taps of the filter, but also compensates linear distortions caused by ER filter and mask filter.

The Nonlinear Equalizer for Super-RENS Read-out Signals using an Asymmetric Waveform Model (비대칭 신호 모델을 이용한 super-RENS 신호에서의 비선형 등화기)

  • Moon, Woosik;Park, Sehwang;Lee, Jieun;Im, Sungbin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.70-75
    • /
    • 2014
  • Super-resolution near-field structure (super-RENS) read-out samples are affected by a nonlinear and noncausal channel, which results in inter-symbol interference (ISI). In this study, we investigate asymmetry or domain bloom in super-RENS in terms of equalization. Domain bloom is caused by writing process in optical recording. We assume in this work that the asymmetry symbol conversion scheme is to generate asymmetric symbols, and then a linear finite impulse response filter can model the read-out channel. For equalizing this overall nonlinear channel, the read-out signals are deconvolved with the finite impulse response filter and its output is decided based on the decision rule table that is developed from the asymmetry symbol conversion scheme. The proposed equalizer is investigated with the simulations and the real super-RENS samples in terms of raw bit error rate.

A research of Single-User Detector using Linear Equalizer in DS-CDMA Downlink (DS-CDMA 하향링크에서 선형등화기를 이용한 단일사용자 수신기에 관한 연구)

  • 강준호;남옥우;김재형
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.199-204
    • /
    • 2000
  • In this paper, we study single-user receiver, which applicable to DS-CDMA downlink. DS-CDMA downlink mainly use wallsh code, its orthogonality may be lost by the multiple access interference(MAI) caused by the multipath channel. In this paper, we use linear channel equalizer to eliminate the interference due to multipath channel and then to recover orthogonalit and use code-matched filter to detect transmitted data. Unlike existing research, which mainly assumed ideal channel information, we use pilot channel to estimate the channel coefficients. Especially we use guard symbols which are inserted periodically to estimate channel coefficients exactly without interference from user signal, and we accept an approximately ideal. The results show that improvement can be achieved using proposed detectors compared with that of that conventional RAKE receiver, especially when the user population is high we accepts excellent performance improvement.

  • PDF

Performance Comparison of Autoencoder based OFDM Communication System with Wi-Fi

  • Shiho Oshiro;Takao Toma;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.172-178
    • /
    • 2023
  • In this paper, performance of autoencoder based OFDM communication systems is compared with IEEE 802.11a Wireless Lan System (Wi-Fi). The proposed autoencoder based OFDM system is composed of the following steps. First, one sub-carrier's transmitter - channel - receiver system is created by autoencoder. Then learning process of the one sub-carrier autoencoder generates constellation map. Secondly, using the plural sub-carrier autoencoder systems, parallel bundle is configured with inserting IFFT and FFT before and after the channel to configure OFDM system. Finally, the receiver part of the OFDM communication system was updated by re-learning process for adapting channel condition such as multipath channel. For performance comparison, IEEE802.11a and the proposed autoencoder based OFDM system are compared. For channel estimation, Wi-Fi uses initial long preamble to measure channel condition. but Autoencoder needs re-learning process to create an equalizer which compensate a distortion caused by the transmission channel. Therefore, this autoencoder based system has basic advantage to the Wi-Fi system. For the comparison of the system, additive random noise and 2-wave and 4-wave multipaths are assumed in the transmission path with no inter-symbol interference. A simulation was performed to compare the conventional type and the autoencoder. As a result of the simulation, the autoencoder properly generated automatic constellations with QPSK, 16QAM, and 64QAM. In the previous simulation, the received data was relearned, thus the performance was poor, but the performance improved by making the initial value of reception a random number. A function equivalent to an equalizer for multipath channels has been realized in OFDM systems. As a future task, there is not include error correction at this time, we plan to make further improvements by incorporating error correction in the future.

An Adaptive Partial Response Equalizer Using Branch Metrics of Viterbi Trellis for Optical Recording Systems (고밀도 광 기록 장치에서 비터비 트렐리스의 가지 메트릭을 이용한 부분 응답 적응 등화기)

  • Lee, Kyu-Suk;Lee, Joo-Hyun;Lee, Jae-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9C
    • /
    • pp.871-876
    • /
    • 2005
  • In this paper, we propose an improved partial response maximum likelihood (PRML) detection scheme that has an adaptive equalizer and can be applied in the asymmetric optical recording system with high-density. We confirmed that the proposed PRML detector improves detection performance. In addition, we implemented the detector by Verilog HDL. The adaptive equalizer is composed of tap coefficient updating unit using LMS algorithn and FIR filter. FIR filter is implemented by the transposed direct form architecture for high speed operation. Viterbi detector is implemented by the register exchange method.

A Software/Hardware Codesign of the MLSE Equalizer for GSM/GPRS (GSM/GPRS용 MLSE 등화기의 소프트웨어/하드웨어 통합설계 구조제안)

  • 전영섭;박원흠;선우명훈;김경호
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.10
    • /
    • pp.11-20
    • /
    • 2002
  • This paper proposes a hardware/software codesign of the MLSE equalizer for GSM.GPRS systems. We analyze algorithms of the MLSE equalizer which consists of a channel estimator using the correlation method and the Viterbi processor. We estimate the computational complexity requirement based on the simulation of TI TMS320C5x DSP. We also estimate the gate count from the results of logic synthesis using the samsung 0.5㎛ standard cell library (STD80). Based on the results of the complexity estimation and gate count, we propose the efficient software/hardware codesign of the MLSE equalizer based on the results of the complexity estimation and gate count.

Performance Analysis of Cyclostationary Interference Suppression for Multiuser Wired Communication Systems

  • Im, Gi-Hong;Won, Hui-Chul
    • Journal of Communications and Networks
    • /
    • v.6 no.2
    • /
    • pp.93-105
    • /
    • 2004
  • This paper discusses cyclostationary interference suppression for multiuser wired communication systems. Crosstalk interference from digital signals in multipair cables has been shown to be cyclostationary. Many crosstalk equalization or suppression techniques have been proposed which make implicit use of the cyclostationarity of the crosstalk interferer. In this paper, the convergence and steady-state behaviors of a fractionally spaced equalizer (FSE) in the presence of multiple cyclostationary crosstalk interference are thoroughly analyzed by using the equalizer's eigenstructure. The eigenvalues with multiple cyclostationary interference depend upon the folded signal and interferer power spectra, the cross power spectrum between the signal and the interferer, and tile cross power spectrum between the interferers, which results in significantly different initial convergence and steady-state behaviors as compared to the stationary noise case. The performance of the equalizer varies depending on the relative clock phase of the symbol clocks used by the signal and multiple interferers. Measued characteristics as well as analytical model of NEXT/FEXT channel are used to compute the optimum and worst relative clock phases among the signal and multiple interferers.

An Algorithm of Optimal Training Sequence for Effective 1-D Cluster-Based Sequence Equalizer (효율적인 1차원 클러스터 기반의 시퀀스 등화기를 위한 최적의 훈련 시퀀스 구성 알고리즘)

  • Kang Jee-Hye;Kim Sung-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.10 s.89
    • /
    • pp.996-1004
    • /
    • 2004
  • 1-Dimensional Cluster-Based Sequence Equalizer(1-D CBSE) lessens computational load, compared with the classic maximum likelihood sequence estimation(MLSE) equalizers, and has the superiority in the nonlinear channels. In this paper, we proposed an algorithm of searching for optimal training sequence that estimates the cluster centers instead of time-varying multipath fading channel estimation. The proposed equalizer not only resolved the problems in 1-D CBSE but also improved the bandwidth efficiency using the shorten length of taming sequence to improve bandwidth efficiency. In experiments, the superiority of the new method is demonstrated by comparing conventional 1-D CBSE and related analysis.

Design of MTLMS based Decision Feedback Equalizer (MTLMS 기반의 결정귀환 등화기의 설계)

  • Choi Yun-Seok;Park Hyung-Kun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.950-953
    • /
    • 2006
  • A key issue toward mobile multimedia communications is to create technologies for broadband signal transmission that can support high quality services. Such a broadband mobile communications system should be able to overcome severe distortion caused by time-varying multi-path fading channel, while providing high spectral efficiency and low power consumption. For these reasons, an adaptive suboptimum decision feedback equalizer (DFE) for the single-carrier short-burst transmissions system is considered as one of the feasible solutions. For the performance improvement of the system with the short-burst format including the short training sequence, in this paper, the multiple-training least mean square (MTLMS) based DFE scheme with soft decision feedback is proposed and its performance is investigated in mobile wireless channels throughout computer simulation.

  • PDF

Sparse decision feedback equalization for underwater acoustic channel based on minimum symbol error rate

  • Wang, Zhenzhong;Chen, Fangjiong;Yu, Hua;Shan, Zhilong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.617-627
    • /
    • 2021
  • Underwater Acoustic Channels (UAC) have inherent sparse characteristics. The traditional adaptive equalization techniques do not utilize this feature to improve the performance. In this paper we consider the Variable Adaptive Subgradient Projection (V-ASPM) method to derive a new sparse equalization algorithm based on the Minimum Symbol Error Rate (MSER) criterion. Compared with the original MSER algorithm, our proposed scheme adds sparse matrix to the iterative formula, which can assign independent step-sizes to the equalizer taps. How to obtain such proper sparse matrix is also analyzed. On this basis, the selection scheme of the sparse matrix is obtained by combining the variable step-sizes and equalizer sparsity measure. We call the new algorithm Sparse-Control Proportional-MSER (SC-PMSER) equalizer. Finally, the proposed SC-PMSER equalizer is embedded into a turbo receiver, which perform turbo decoding, Digital Phase-Locked Loop (DPLL), time-reversal receiving and multi-reception diversity. Simulation and real-field experimental results show that the proposed algorithm has better performance in convergence speed and Bit Error Rate (BER).