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Abstract 

In this paper, performance of autoencoder based OFDM 
communication systems is compared with IEEE 802.11a Wireless 
Lan System (Wi-Fi). The proposed autoencoder based OFDM 
system is composed of the following steps. First, one sub-carrier’s 
transmitter - channel – receiver system is created by autoencoder. 
Then learning process of the one sub-carrier autoencoder generates 
constellation map. Secondly, using the plural sub-carrier 
autoencoder systems, parallel bundle is configured with inserting 
IFFT and FFT before and after the channel to configure OFDM 
system. Finally, the receiver part of the OFDM communication 
system was updated by re-learning process for adapting channel 
condition such as multipath channel. 

For performance comparison, IEEE802.11a and the proposed 
autoencoder based OFDM system are compared. For channel 
estimation, Wi-Fi uses initial long preamble to measure channel 
condition. but Autoencoder needs re-learning process to create an 
equalizer which compensate a distortion caused by the 
transmission channel. Therefore, this autoencoder based system 
has basic advantage to the Wi-Fi system. For the comparison of 
the system, additive random noise and 2-wave and 4-wave 
multipaths are assumed in the transmission path with no inter-
symbol interference. 

A simulation was performed to compare the conventional type 
and the autoencoder. As a result of the simulation, the autoencoder 
properly generated automatic constellations with QPSK, 16QAM, 
and 64QAM. In the previous simulation, the received data was re-
learned, thus the performance was poor, but the performance 
improved by making the initial value of reception a random 
number. A function equivalent to an equalizer for multipath 
channels has been realized in OFDM systems. 

As a future task, there is not include error correction at this time, 
we plan to make further improvements by incorporating error 
correction in the future. 
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1. INTRODUCTION 

In recent years, autoencoders, which are one type of 
deep neural network, have the characteristic that the 
input and the output match. Also, inside the autoencoder, 

it is possible to remove noise contained in the input data 
and convey it to the output by dimensional compression 
of the information. As an advantage of digital 
communication systems using autoencoders, it is not 
necessary to design each individual block, such as 
modulation and error correction, and end-to-end neural 
networks can be implemented. In addition, it may be 
possible to learn communication that is more efficient 
and robust against noise compared to conventional 
communication methods. 

In the OFDM communication system, input 
information is first modulated into a digital signal, 
converted into OFDM communication by inverse 
Fourier transform, and transmitted. After the signal 
reaches the receiving side, Fourier transform, 
demodulation processing, and error correction are 
performed to restore the original information and output. 
This mechanism of "matching input and output values" 
is common to autoencoders, suggesting that 
autoencoders can be applied to communication systems. 

In this research, it constructed an OFDM 
communication system by arranging multiple 
autoencoders in parallel and using inverse Fourier 
transform and Fourier transform. And it compared the 
autoencoder OFDM communication system conforming 
to the IEEE 802.1a standard with the conventional 
OFDM communication system and evaluated its 
performance. Assuming additive random noise and 2-
wave and 4-wave multipath as the transmission path, and 
assuming no inter symbol interference, the performance 
of QPSK, 16QAM, and 64QAM modulation is compared 
and evaluated by simulation. And finally, this paper 
compares whether this study was able to improve the 
results obtained in previous simulations. 

Chapter 1 presents the background and purpose of the 
research as an introduction. Chapter 2 describes the 
overview of communication systems, wireless standards, 
and specifications of each communication system. In 
Chapter 3, this paper presented the simulation results and 
compared the conventional system and the autoencoder. 
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Finally, Chapter 4 shows the summary of this paper. 
 
 
2. METHODOLOGY 

This chapter describes the configuration of the 
communication system, IEEE 802.11a, and the 
specifications of each communication system. 
 
 
2.1. Communication System Configuration 

 Consider the entire digital communication system (end-
to-end) as an autoencoder. Figure 1 is an image of an 
autoencoder communication system. The system can be 
roughly divided into three parts: a transmitter, a channel, 
and a receiver. The transmitter and receiver each consist 
of a neural network for communication processing. The 
channel section assumes an actual transmission line, and 
processes such as noise addition and distortion are 
performed on the digital signal. 

Consider the case of sending n bits of data in this system. 
The n-bit data input to the transmitter is converted into a 
one-hot vector of representable length m=2𝑛. This m is 
the number of symbols of the constellation used in this 
communication system. The one-hot vector passes 
through the neural network of the transmitter, is 
converted to a complex signal, and is transmitted after 
normalizing the average power of the output to 1. In the 
process of signal propagation, noise on the transmission 
path mixes with the signal and the signal is distorted. The 
received signal passes through the neural network of the 
receiver and is restored to the original data. However, 
since the values output by the neural network are 
probabilistic for all possible values, the value with the 
highest probability is assumed as the original data. 
  A series of these processes are created as an 
autoencoder digital communication model and learned. 
Learning is performed in the 'Dense layer' (fully 

connected layer) in the transmitter and receiver in Fig. 1, 
and the neural network automatically adjusts the weight 
and bias, which are internal parameters. In the process, 
the transmitter learns the constellation and the receiver 
learns the demodulation of the data, thereby constructing 
a communication system that is robust against noise and 
distortion. As a result, by arranging multiple trained 
models in parallel, an autoencoder OFDM 
communication model with multiple subcarriers (Fig. 2) 
is constructed. There are two 'Dense layers' in the 
receiving part of the autoencoder. This layer learns the 
feature quantity of the signal in digital communication 
and demodulates the received signal. 
In general, the fewer the number of weights and layers in 
a neural network are better. If the weights and layers are 
increased, processing speed is delay and cause over-
learning [13]. 

However, if the accuracy cannot be improved only by 
adjusting the parameters, increasing the number of 
weights and layers may improve the accuracy.  

System performance is evaluated by comparing the 
output value with the input value and using SER (symbol 
error rate). 
 
 
2.2. About IEEE 802.11a  

The autoencoder communication system (hereafter 
referred to as Autoencoder in this research conforms to 
the IEEE 802.11a standard, assuming its use in an actual 
wireless LAN. IEEE 802.11a is one of the standards for 
wireless LAN and is a specification that allows 
communication at a maximum of 54 Mbps using radio 
waves in the 5 GHz band. Table 1 shows the 802.11a 
specifications. The number of subcarriers is 52, the FFT 
length is 64 because the FFT index 0 and guard intervals 
27 to 38, 12 in total, are unused. Considering the guard 
interval length of 11 points, noise and multipath are 
applied to these 64 points.  

Fig. 1: Autoencoder Communication System 
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Table 1: specification of IEEE 802.11a 

Parameters Values 

FFT length 64 

Number of subcarriers 
52 (including pilot  

4 subcarriers) 

Modulation method QPSK, 16QAM, 64QAM 

Guard Interval 800ns 

Symbol length 
4000ns 

(FFT symbol 3200ns  
+ 800ns) 

 
 
2.3. Specifications of Each Communication 

System 

Specifications for autoencoder communication systems, 
single autoencoders, and constellation generation by 
autoencoders are described. 

 
 
 

2.3.1. Specifications of Autoencoder 
Communication System 

The specifications of the autoencoder conform to the IEEE 
802.11a standard, with 52 subcarriers and 64 FFT lengths. 
The number of symbols in the constellation is 4, 16 and 64, 
corresponding to QPSK, 16QAM and 64QAM respectively. 

Assuming additive random noise and a two-wave multipath 
environment consisting of the main wave and one delayed 
wave as the transmission path, it will take countermeasures. 
 
 
2.3.2. Training a Single Autoencoder 

In order to optimize the created autoencoder, it is 
necessary to search for the optimal SNR for training the 
communication system. Optimal SNR refers to her SNR 
of the training data at which the communication system 
reduces his SER the most when training his autoencoder. 
First, prepare 31 sets of training data with SNR = 0 to 30 
dB in increments of 1 dB, and prepare an autoencoder for 
each set of data for training. This creates 31 autoencoders 
with slightly different her SNRs on the training data. 

 
 

Fig. 2: Parallel OFDM Autoencoder Communication System 

 
 

Fig. 3: Constellation of QPSK 
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Evaluate these autoencoders and compare how much 
SER can be reduced. Among these, he decides to use the 
training SNR with the lowest SER as the optimum SNR 
for training of the communication system in subsequent 
verifications. However, the value of evaluate is not 
constant and varies with each execution, hence it will 
take the average of SER that has been executed several 
times (In this time, four times). 
 
 
2.3.3. Generating Constellations with Autoencoders 

An autoencoder generates a constellation in the process of 
learning a communication system. It is a unique 
constellation generated by the autoencoder itself, different 
from his QPSK and 16QAM used in common 
communication systems and may have higher error 
resilience than conventional modulation schemes.  
Plot the constellation generated by the trained autoencoder 

and check how it looks. OFDM communication with 52 
subcarriers and 64 FFT lengths (Fig. 2), the SNR of the 
transmission path was 100 dB, and the multipath amplitude 
was r = 0.0. The generated constellations are as follows: 
Figure 3 is for 4 points, Figure 4 is for 16 points, and Figure 
5 is for 64 points. 
 
 
2.4. Simulation Results 

From this paragraph, it shows some simulation results. 
Table 2 shows the simulation environment. 
Communication standard is IEEE 802.11a, modulation 
methods are QPSK, 16QAM and 64QAM, SN rate is 
from 0 to 40, Inter-Symbol-Interference is not considered. 

 
 

Table 2: Simulation environment 

Parameters Values 

Transmission 
environment 

Additive random noise, 
multipath 

Evaluation metric 
Symbol Error Rate 

(SER) 

Communication standard IEEE 802.11a 

Modulation method 
QPSK, 16QAM, 

64QAM 

SN rate 0~40dB 

Number of multipaths 4 

Multipath delay 4, 8, 12 Tap 

Multipath amplitude 0.0~1.0 

Inter-Symbol-
Interference 

None 

Note that the following autoencoder vs. conventional 
comparison is somewhat unfair. In conventional 
communication systems, channel estimation must be 
performed using pilot signals when signals are received, 
and the pilot signals are also affected by noise. In 
communication using an autoencoder, since learning is 
performed with the channel determined in advance, it is 

Fig. 4: Constellation of 16QAM 

Fig. 5: Constellation of 64QAM 
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considered that the channel has already been estimated 
by learning. For that reason, SER is considered to have a 
slight advantage over autoencoders, and it is necessary to 
consider this point in the comparison. And the SER under 
the multipath environment with each number of symbols 
was verified by simulation. Assuming a four-wave 
multipath environment consisting of the main wave and 
three delayed wave, the delay is 12 taps, and the 
amplitude r is varied from 0.0 to 1.0 in increments of 0.1. 

Fig. 6 to Fig. 11 compare conventional Wi-Fi 
communication and autoencoder communication. 
Simulation results for QPSK, 16QAM, and 64QAM are 
shown below with multipath. 
First, for QPSK SER, the conventional type is shown in 
Fig. 6, and the autoencoder is shown in Fig. 7. The 
autoencoder performs as well or slightly better than the 
conventional one. Even if the SNR is compared, the 
autoencoder can keep the BER low, which is an 

improvement. 
Next, for 16QAM SER, Fig. 8 shows the conventional 

type and Fig. 9 shows the autoencoder. up to r=0.7, there 
is same or slightly better than the conventional type, but 
after r=0.8, the conventional system has a lower SER. 
Next, for 64 QAM SER, Fig. 10 shows the conventional 

type and Fig. 11 shows the autoencoder.  when the SNR is 
40 dB, the autoencoder is able to set the SER to 0 up to r = 
0.5 as well as the conventional type, and the performance 
after r = 0.6 is comparable to the conventional type. As the 
number of symbols increases, it can reduce the SER at 
almost any number of symbols. And, regarding the 
performance of the autoencoder, when the number of 
symbols is 4, the SER is on par with the conventional 
type, QPSK, 16QAM, and 64QAM have all been able to 
prove that the performance has been improved from 
before [1][2]. 

 

 
Fig. 7: Autoencoder Communication System (QPSK) 

 
Fig. 6: Conventional Communication System (QPSK) 

 
Fig. 8: Conventional Communication System (16QAM) 

 
Fig. 9: Autoencoder Communication System (16QAM) 
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3. CONCLUSION 

 This paper compares the performance of autoencoder-
based OFDM communication systems over Wi-Fi. 
Comparing a communication system using a 
conventional system and an autoencoder, the 
autoencoder was able to demodulate against multipath as 
well as the conventional system. A random-like 
constellation could be generated by learning with a 
neural network. When the above was converted to 
OFDM and trained on multipath channels, the reception 
side could demodulate against multipaths, and the 
performance was not inferior. Even if the number of 
symbols increases, it can reduce the SER at almost any 
number of symbols. And, regarding the performance of 
the autoencoder, when the number of symbols is 4, the 
SER is on par with the conventional type, QPSK, 

16QAM, and 64QAM have all been able to prove that the 
performance has been improved from before [1][2]. 

Fig. 12 is the result of compare Neural Network with 
Conventional system. Blue color is Neural Network, and 
red color is conventional system. At 4 symbols, SER of 
Neural Network was not detected. Even with 16 symbols 
and 64 symbols, the neural network was able to suppress 
SER more than the conventional system. 

As a future task, there is not include error correction at 
this time, therefore, we plan to make further 
improvements by incorporating error correction in the 
future. 
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