• Title/Summary/Keyword: channel equalizer

Search Result 431, Processing Time 0.032 seconds

A Study on the Performance improvement of TEA adaptive equalizer using Precoding (사전 부호화를 이용한 TEA 적응 등화기의 성능 개선에 관한 연구)

  • Lim Seung-Gag
    • The KIPS Transactions:PartC
    • /
    • v.13C no.3 s.106
    • /
    • pp.369-374
    • /
    • 2006
  • This paper related with the performance improvement of adaptive equalizer that is a based on the tricepstrum eqalization algorithm by using the received signal. Adaptive equalizer used for the improvement of communication performance, like as high speed, maintain of synchronization, BER, at the receive side in the environment of communication channel of the presence of the aditive noise, phase distortion and frequency selective fading, mainly. It's characteristics are nearly same as the inverse characterstics of the communication channel. In this paper, the TEA algorithm using the HOS and the 16-QAM which is 2-dimensional signaling method for being considered signal was used. For the precoding of 16-QAM singnal in the assignment of the signal costellation, Gray code was used, and the improvement of performance was gained by computer simulation in the residual intersymbol interence and mean squared error which is representive measurement of adaptive equalizer.

An Iterative Two-Dimensional Equalizer for Bit Patterned Media Storage Systems Based on Contraction Mapping (비트 패턴 미디어 저장장치를 위한 축약사상 기반의 반복적 2차원 등화기)

  • Moon, Woosik;Im, Sungbin;Park, Sehwang
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.3-8
    • /
    • 2013
  • Bit patterned media (BPM) storage is one of the promising technologies to overcome the limitations of the conventional magnetic recording. However, there are some problems in a high areal density BPM storage, inter-track interference, inter-symbol interference and noise which are severely degrading performance of the system with reducing the bit error rate. In this paper, we present a simple iterative two-dimensional equalizer based on the contraction mapping theorem to mitigate these adverse effects. Furthermore, we examine that the channel characteristics of the proposed two-dimensional equalizer satisfies the convergence conditions. In the simulation we demonstrate the bit separation characteristics of the one-dimensional equalizer and the two-dimensional equalizer and evaluate the BER performance of the proposed equalizer comparing with the conventional equalizers. According to the results of experiments, the proposed equalizer is an promising equalizer with maintaining proper complexity for a high areal density BPM storage.

A Rake receiver for CCK wireless LAN modem based on Channel Matched Filter (CCK 무선랜 모뎀을 위한 Channel Matched Filter 기반의 RAKE 수신기)

  • Lee Yusung;Park Hyuncheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.5C
    • /
    • pp.329-337
    • /
    • 2005
  • In this paper, we propose a new type of RAKE receiver for complementary code keying (CCK) codes, which is suitable for the multipath channel with large delay spread. Our proposed system is based on channel matched filter (CMF) with decision feedback equalizer (DFE) and contains codeword DFE structure. In our system, inter chip interference (ICI) and inter symbol interference (ISI) generated due to multipath environments are calculated by using detected CCK codeword. Also it uses the error correcting capability of CCK codes, and it can remove ISI and ICI at the same time.

On the Performance Analysis of Blind Equalization for Parial Response Channels (부분응답 채널에 대한 블라인드 등화기의 성능분석)

  • Lee, Sang-Kyung;Lee, Jae-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.4C
    • /
    • pp.413-423
    • /
    • 2003
  • The CMA algorithmis most widely investigated blind algorithm and the most widely used one in practice. But, since nonlinear CM cost function have not closed form solution about the optimum weight. There have been difficultiesto analyze the CMA equalizer's theoretical performance. Recently, Zeng presents the notable theoretical resultabout the MSE of CM-minimizing estimators for the FIR linear channel in the presence of AWGN. Through this method, It wouldbe possible to campare the theoretical performance between CMA and Wiener equalizer in terms of MSE. In this paper, based on Zeng's method, we first calculate the theoretical MSE bound of CMA equalizer in partial response channel which is widely used in HDD, digital VCR such as high-density digital recording.playback systems. We confirmedthis result withthe computer simulation. Except this, we also performedthe theoretical and simulation analysis about the modified CMA equalizer, which was proposed to improve the performance of CMA equalizer in partial response channel. Finally, we compare and evaluate the performance analysis results between CMA and Modified CMA equalizer.

Adaptive Decision Feedback Equalizer using the hierarchical Feedback filter and Soft decision device (계층적 궤환 필터 구조와 연판정 장치를 갖는 적응형 결정 궤환 등화기)

  • Lim, Dong-Guk;Song, Jeong-Ig;Kim, Jae-Mong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.1
    • /
    • pp.138-145
    • /
    • 2007
  • Wireless transmission system using the multipath channel is affected ISI due to the delay spread. So we use a decision feedback equalizer which consist of decision part and feedback filter for remove the ISI effectively. In this paper, we propose a improved adaptive decision feedback equalizer to mitigate ISI effectively. The proposed adaptive decision feedback equalizer is construct by using soft decision device and hierarchical feedback filter based on MMSE sub-optimal equalizer using the LMS algorithm. Soft decision device mitigate the error propagation in feedback filter by incorrectly detected decision symbol and feedback filter which is divided two step independently mitigate the ISI by using a adaptive algorithm. As a result this structure shows better performance than conventional decision feedback equalizer by mitigating the error propagation in filter cause incorrectly detecting symbol. and we get the MSE more rapidly by using larger step-size due to reduce the number of feedback filter tap. In computer simulation, we compare the bit error rate performance of proposed decision feedback equalizer with conventional one on the S-V channel model for UWB system.

Analysis of Optimum Iterative Codes for Underwater Acoustic Communication based on Turbo Equalizer (수중 음향통신에 적합한 터보 등화기 기반의 최적의 반복 부호 기법 연구)

  • Park, Tae-Doo;Jung, Ji-Won
    • Journal of Navigation and Port Research
    • /
    • v.37 no.5
    • /
    • pp.487-492
    • /
    • 2013
  • Underwater acoustic communication has multipath error because of reflection by sea-level and sea-bottom. The multipath of underwater channel causes signal distortion and error floor. In order to improve the performance, it is necessary to employ an iterative coding scheme. Among the iterative coding scheme, turbo codes, LDPC codes and convolutional code based on BCJR algorithm are dominant channel coding schemes in recent. Therefore this paper analyzed the performance of iterative codes based on turbo equalizer with the same coding rate and similar codeword length. The performances of three kinds of iterative codes were evaluated in the environment of underwater acoustic communication channel that are real data collected in Korean east sea. The distance of transmitter and receiver was 5Km and data rate was 1Kbps. As a result, convolutional code based on BCJR algorithm has better performance in underwater channel than turbo codes and LDPC codes.

An ICI Canceling 5G System Receiver for 500km/h Linear Motor Car

  • Suguru Kuniyoshi;Rie Saotome;Shiho Oshiro;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.27-34
    • /
    • 2023
  • This paper proposed an Inter-Carrier-Interference (ICI) Canceling Orthogonal Frequency Division Multiplexing (OFDM) receiver for 5G mobile system to support 500 km/h linear motor high speed terrestrial transportation service. A receiver in such high-speed train sees the transmission channel which is composed of multiple Doppler-shifted propagation paths. Then, a loss of sub-carrier orthogonality due to Doppler-spread channels causes ICI. The ICI Canceler is realized by the following three steps. First, using the Demodulation Reference Symbol (DMRS) pilot signals, it analyzes three parameters such as attenuation, relative delay, and Doppler-shift of each multi-path component. Secondly, based on the sets of three parameters, Channel Transfer Function (CTF) of sender sub-carrier number 𝒏 to receiver sub-carrier number 𝒍 is generated. In case of 𝒏≠𝒍, the CTF corresponds to ICI factor. Thirdly, since ICI factor is obtained, by applying ICI reverse operation by Multi-Tap Equalizer, ICI canceling can be realized. ICI canceling performance has been simulated assuming severe channel condition such as 500 km/h, 2 path reverse Doppler Shift for QPSK, 16QAM, 64QAM and 256QAM modulations. In particular, for modulation schemes below 16QAM, we confirmed that the difference between BER in a 2 path reverse Doppler shift environment and stationary environment at a moving speed of 500 km/h was very small when the number of taps in the multi-tap equalizer was set to 31 taps or more. We also confirmed that the BER performance in high-speed mobile communications for multi-level modulation schemes above 64QAM is dramatically improved by the use of a multi-tap equalizer.

Noise-Predictive Decision-Feedback Equalizer for Wireless Mobile Communications (무선 이동 통신을 위한 잡음 예측 결정 궤환 등화기)

  • Hong, Dae-Ki;Kim, Sun-Hee;Kim, Young-Sung;Cho, Jin-Woong;Kang, Sung-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.1
    • /
    • pp.164-171
    • /
    • 2008
  • Adaptive equalizers are inevitable schemes in digital communication systems for compensating the transmission channel distortion. Additionally, to obtain the required BER(Bit Error Rate), the adaptive algorithms appropriate to the mobile communication channels are required. In this paper, we propose the NPDFE (Noise-Predictive Decision Feedback Equalizer) for communication systems performance improvement in mobile communication channels. The performance of the proposed NPDFE with QPSK (Quadrature Phase Shift Keying) is simulated under AWGN (Additive White Gaussian Noise), Ricean fading, ETSI (European Telecommunications Standards Institute) fading, and Rayleigh fading channels. The equalizers used in simulations are a LE (Linear Equalizer), a DFE (Decision Feedback Equalizer), and a NPDFE. Moreover, the equalizer performance criterion of the QPSK is the BER.

Performance analysis of joint equalizer and phase-locked loop in underwater acoustic communications (수중 음향통신에서 위상고정루프와 결합된 등화기의 성능분석)

  • Kim, Seunghwan;Kim, In Soo;Do, Dae-Won;Ko, Seokjun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.166-173
    • /
    • 2022
  • In this paper, the performance of joint equalizer and phase-locked loop in underwater communications is analyzed. In the channel where the Doppler frequency exists, it is difficult to recover the transmitted data only by the equalizer. To compensate for the Doppler frequency, the phase-locked loop is used. For removing the time-varying multipath and the Doppler frequency simultaneously, the equalizer and the phase-locked loop operate jointly. Also, if the initial Doppler frequency error obtained by Fast Fourier Transform (FFT) is compensated, the convergence speed of the joint equalizer and phase-locked loop can be improved. To verify the performance, lake and sea experiments were conducted. As a result, it was showed that the joint equalizer and phase-locked loop converges sufficiently in the preamble (known data) period regardless of whether the Doppler frequency is compensated or not. And, the bit error in random data period is not occurred. However, we can increase the convergence speed of the equalizer more than twice through the compensation of Doppler frequency.

Frequency-Domain Equalizer Using 2-Dimensional LMS Algorithm for DWMT Based VDSL Transceiver (DWMT 기반 VDSL 송수신기를 위한 2차원 LMS 방식의 주파수 영역 등화기 구현)

  • 박태윤;최재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.4B
    • /
    • pp.629-634
    • /
    • 2000
  • In this paper, we describe the structure of the DWMT (discrete wavelet multitone) transceiver for VDSL system. The DWMT transceiver consists of the transmultiplexer using cosine modulation filter bank (CMFB), time domain equalizer (TEQ) and frequency domain equalizer (FEQ) minimizing the effects of the transmission channel. For FEQ, we have expanded the conventional l-D linear transversal equalizer into 2-dimensions, i.e. time and subchannel axes and we have implemented it using the 2-dimensional LMS methods. In order to qualify the performance of FEQ, we have applied it to the DWMT based VDSL transceiver and the equalizer's performance is verified by simulation using the VDSL line test model specified by the ANSI T1E1.4 requirements.

  • PDF