• Title/Summary/Keyword: channel bandwidth

Search Result 897, Processing Time 0.031 seconds

Raptor FEC Based Channel-Adaptive Video Transmission Scheme over WiBro Network (와이브로 환경에서 랩터 FEC 기반의 채널 적응형 비디오 전송 기법)

  • Kim, Hye-Soo;Jeong, Jae-Yun;Byun, Keun-Yung;Nam, Hyeong-Min;Ko, Sung-Jea
    • Journal of IKEEE
    • /
    • v.13 no.4
    • /
    • pp.29-36
    • /
    • 2009
  • The packet loss and the disconnection during handoff are the most critical problems which degrade the video quality in wireless video streaming. To cope with these problems, we propose an efficient video streaming method in this paper, which does not only dynamically adjust the video transmission rate based on the raptor forward error correction (FEC) level, but also minimize the error propagation during handoff. Firstly, the channel bandwidth of the wireless broadband internet, called WiBro, is estimated by analyzing channel parameters including the carrier to interference and noise ratio (CINR) and the handoff. Secondly, the streaming server adjusts the next transmission rate according to the estimated channel bandwidth and the raptor FEC level to avoid packet error. Also, the encoder performs the intra refresh method that inserts an intra frame (I-frame) right after handoff to reduce the error propagation effectively. Experimental results indicate that the proposed method can improve the performance of the video streaming over WiBro network.

  • PDF

Design and Evaluation of a Channel Reservation Batch-Patching Technique for VOD Services (VOD 서비스를 위한 채널 예약 배치-패칭 방법의 설계 및 평가)

  • 하숙정;이경숙;배인한
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.3
    • /
    • pp.357-367
    • /
    • 2004
  • In VOD systems the number of channels available to a video server is limited since the number of channels, the video server can support, is determined by the communication bandwidth of the video server. Multicast techniques such as batching, patching and batch-patching have been proposed to reduce I/O demand on the video server by sharing multicast data. In this paper, we propose a channel reservation batch-patching technique that first applies the batching technique to hot video requests and then applies the patching technique to the batches of the hot video requests. And the proposed technique reserves a part of the channel capacity of the video server for many hot video requests, so that the hot video requests can be served without defection. The performance of the proposed technique is compared with those of Patching and Batch-Patching techniques in terms of average service latency, defection rate, fairness and frame reduction rate by simulations.

  • PDF

A Study on the Improvement of Isolated Word Recognition for Telephone Speech (전화음성의 격리단어인식 개선에 관한 연구)

  • Do, Sam-Joo;Un, Chong-Kwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.9 no.4
    • /
    • pp.66-76
    • /
    • 1990
  • In this work, the effect of noise and distortion of a telephone channel on the speech recognition is studied, and methods to improve the recognition rate are proposed. Computer simulation is done using the 100-word test data whichwere made by pronouncing ten times 100-phonetically balanced Korean isolated words in a speaker dependent mode. First, a spectral subtraction method is suggested to improve the noisy speech recognition. Then, the effect of bandwidth limiting and channel distortion is studied. It has been found that bandwidth limiting and amplitude distortion lower the recognition rate significantly, but phase distortion affects little. To reduce the channel effect, we modify the reference pattern according to some training data. When both channel noise and distortion exist, the recognition rate without the proposed method is merely 7.7~26.4%, but the recognition rate with the proposed method is drastically increased to 76.2~92.3%.

  • PDF

A 4×32-Channel Neural Recording System for Deep Brain Stimulation Systems

  • Kim, Susie;Na, Seung-In;Yang, Youngtae;Kim, Hyunjong;Kim, Taehoon;Cho, Jun Soo;Kim, Jinhyung;Chang, Jin Woo;Kim, Suhwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.1
    • /
    • pp.129-140
    • /
    • 2017
  • In this paper, a $4{\times}32$-channel neural recording system capable of acquiring neural signals is introduced. Four 32-channel neural recording ICs, complex programmable logic devices (CPLDs), a micro controller unit (MCU) with USB interface, and a PC are used. Each neural recording IC, implemented in $0.18{\mu}m$ CMOS technology, includes 32 channels of analog front-ends (AFEs), a 32-to-1 analog multiplexer, and an analog-to-digital converter (ADC). The mid-band gain of the AFE is adjustable in four steps, and have a tunable bandwidth. The AFE has a mid-band gain of 54.5 dB to 65.7 dB and a bandwidth of 35.3 Hz to 5.8 kHz. The high-pass cutoff frequency of the AFE varies from 18.6 Hz to 154.7 Hz. The input-referred noise (IRN) of the AFE is $10.2{\mu}V_{rms}$. A high-resolution, low-power ADC with a high conversion speed achieves a signal-to-noise and distortion ratio (SNDR) of 50.63 dB and a spurious-free dynamic range (SFDR) of 63.88 dB, at a sampling-rate of 2.5 MS/s. The effectiveness of our neural recording system is validated in in-vivo recording of the primary somatosensory cortex of a rat.

Channel Selection for the Coexistence of Different Bandwidth Systems in TV White Space (TV 화이트 스페이스에서 서로 다른 대역폭을 가진 시스템들의 공존을 위한 적응적 채널 선택 기법)

  • Noh, Go-San;Bang, Keuk-Joon;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.3
    • /
    • pp.1-7
    • /
    • 2012
  • In this paper, we consider a channel selection method for the coexistence of heterogeneous systems in the TV white space (TVWS). First, we define the target heterogeneous system structure. Then, under the defined system structure, we discuss how the heterogeneous systems share the TVWS channels. Specifically, the heterogeneous systems having different bandwidths cannot use the TVWS channels due to the lack of wideband channels when only narrowband channels are remained. Hence, in order to minimize the blocking from the different bandwidth problem, we propose a channel selection method for the narrowband systems to firstly occupy the narrowband channels rather than the wideband channels. The proposed narrowband-first channel selection is shown to enhance the spectral efficiency of the TVWS, especially in the IEEE 802.19.1 wireless coexistence system.

A Performance Improvement of Cognitive User by Using Bandwidth Reallocation in Cognitive Radio Systems (인지 라디오 시스템에서 대역폭 재할당을 이용한 인지 사용자의 성능향상)

  • Lee, Jin-Yi
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.5
    • /
    • pp.415-420
    • /
    • 2014
  • Another crucial issue is a providing secondary user(SU) with the its guaranteed quality of service(QoS) in cognitive radio systems, from the SU view to be allowed to opportunistically utilize the primary user(PU) spectrum on non-interfering. In this paper, we propose a bandwidth reallocation scheme for reducing SU dropping rate through renegotiation of requested channel numbers when available bandwidth is not enough for accepting the spectrum handoff SUs. We categorize SU calls into two types : the first priority and the second priority SU, and the first SU' service is supported by bandwidth reservation based on ARMA prediction model for PU arrivals, while the second SU's bandwidth demands for spectrum handoff is to be reallocated through their renegotiation. Simulation results show that our scheme can improve SU dropping rate and system resource utilization efficiency by bandwidth reallocation.

Deep Learning based Raw Audio Signal Bandwidth Extension System (딥러닝 기반 음향 신호 대역 확장 시스템)

  • Kim, Yun-Su;Seok, Jong-Won
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1122-1128
    • /
    • 2020
  • Bandwidth Extension refers to restoring and expanding a narrow band signal(NB) that is damaged or damaged in the encoding and decoding process due to the lack of channel capacity or the characteristics of the codec installed in the mobile communication device. It means converting to a wideband signal(WB). Bandwidth extension research mainly focuses on voice signals and converts high bands into frequency domains, such as SBR (Spectral Band Replication) and IGF (Intelligent Gap Filling), and restores disappeared or damaged high bands based on complex feature extraction processes. In this paper, we propose a model that outputs an bandwidth extended signal based on an autoencoder among deep learning models, using the residual connection of one-dimensional convolutional neural networks (CNN), the bandwidth is extended by inputting a time domain signal of a certain length without complicated pre-processing. In addition, it was confirmed that the damaged high band can be restored even by training on a dataset containing various types of sound sources including music that is not limited to the speech.

Dynamic Bandwidth Allocation of CAN-based Network using increments of signal applied to Marine Engine Monitoring System (신호 증감 량을 이용한 CAN 기반 선박 엔진 모니터링 시스템의 동적인 대역폭 할당)

  • Lee, Hyun;Lee, Jun-Seok;Lim, Hyun-Seop;Lee, Jang-Myung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.6
    • /
    • pp.838-844
    • /
    • 2012
  • This paper proposes the effective monitoring method for marine engine system, which is implemented based upon Controller Area Network (CAN). As the marine engine monitoring system requires various kind of information, a lot of sensor nodes are distributed to several places. The CAN supports huge numbers of message IDs for the sensor nodes and provides a stable communication channel in a wide area such as a 12,000 TEU container ship. Since the CAN is priority-based communication system, some of hard real-time messages like alarm messages which are time-critical to the operation of the vessel cannot be communicated within the dead-time. Therefore it is desirable to distinguish the bandwidth of the CAN for static state messages and transition-state messages not to be harmful to the engine operations. Using the features of message arbitration ability of the CAN, it is proposed in this paper that the bandwidth allocation is dynamically adjusted to cope with the increment of input signal to improve the performance of monitoring system. Effectiveness and validity of the proposed scheme have been demonstrated through real experiments.

Available Bandwidth Measurement Method Considering Idle Period and Transmission Overheads in IEEE 802.11b DCF Wireless LANs (IEEE 802.11b DCF 무선랜 환경에서 휴지 기간과 전송 오버헤드를 고려한 가용대역폭 측정 방법)

  • Koo, Hye-Lim;Ha, Sang-Yong;Ryu, Ki-Yeol;Roh, Byeong-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.7B
    • /
    • pp.780-788
    • /
    • 2011
  • The lack of QoS (Quality of Service) support functionalities in IEEE 802.11 DCF mode makes it difficult to provide real-time multimedia services in WLANs. In this paper, we propose an effective available bandwidth measurement method in IEEE 802.11b DCF environments. The proposed method measures the total channel idle time and the collision probability during each measurement period. Then, the available bandwidth is calculated by considering those measured information and the transmission overheads at MAC and PRY layers. The performances of the proposed method are evaluated using OPNET simulator. The simulation results show that the proposed method provides more exact results than existing comparable schemes.

Measurements and Analysis of Fingerprinting Structures for WLAN Localization Systems

  • Al KhanbashI, Nuha;Al Sindi, Nayef;Ali, Nazar;Al-Araji, Saleh
    • ETRI Journal
    • /
    • v.38 no.4
    • /
    • pp.634-644
    • /
    • 2016
  • Channel-based radio-frequency fingerprinting such as a channel impulse response (CIR), channel transfer function (CTF), and frequency coherence function (FCF) have been recently proposed to improve the accuracy at the physical layer; however, their empirical performance, advantages, and limitations have not been well reported. This paper provides a comprehensive empirical performance evaluation of RF location fingerprinting, focusing on a comparison of received-signal strength, CIR-, CTF-, and FCF-based fingerprinting using the weighted k-nearest neighbor pattern recognition technique. Frequency domain channel measurements in the IEEE 802.11 band taken on a university campus were used to evaluate the accuracy of the fingerprinting types and their robustness to human-induced motion perturbations of the channel. The localization performance was analyzed, and the results are described using the spatial and temporal radio propagation characteristics. In particular, we introduce the coherence region to explain the spatial properties and investigate the impact of the Doppler spread in time-varying channels on the time coherence of RF fingerprint structures.