• Title/Summary/Keyword: changing light transmittance

Search Result 15, Processing Time 0.025 seconds

Effect of Light Transmittance Control on the Growth Status of Aerial Parts during the Growing Season of Panax ginseng (생육시기별 광량조절이 인삼의 지상부 생육에 미치는 영향)

  • Cheon, Seong-Ki;Lee, Tae-Su;Yoon, Jong-Hyuk;Lee, Sung-Sik
    • Journal of Ginseng Research
    • /
    • v.27 no.4
    • /
    • pp.202-206
    • /
    • 2003
  • This study was conducted to compare the growth status of aerial parts, photosynthesis and microclimate between fixing light transmittance (Control) and changing light transmittance (C.L.T.) during ginseng growing seasons. Control showed 8% light transmittance rate during growing seasons. But C.L.T. showed 18% light transmittance rate during early (April-June) and late growth stage (September-October) and 6% light transmittance rate middle growth stage(July-August). Air temperature, leaking water rate and soil water content of C.L.T. was higher than those of control during early and late growth stage. But Air temperature, leaking water rate and soil water content of C.L.T was lower than those of control during middle growth stage C.L.T. exhibited superiority in survival ratio, stem diameter, stem length, L.A.I. and stem angle compared to control. Chlorophyll content of C.L.T. was lower than that of control but S.L.W., stomatal opening and photosynthetic rates of C.L.T. was higher than those of control. Also Alternaria blight disease and defoliation of C.L.T. was lower than those of control.

Trends of Daylight Environment for Office Spaces Based on Smart-Window Installation Settings (스마트 윈도우 설치 속성에 따른 사무공간의 주광 환경 추이)

  • Jae-Hyang Kim;Seung-Hoon Han
    • New & Renewable Energy
    • /
    • v.19 no.3
    • /
    • pp.13-21
    • /
    • 2023
  • Smart windows are capable of varying their visible light transmittance (VLT) in response to changing environmental conditions. The VLT variability of architectural windows is highly valuable because it enables indoor lighting and energy environments to align with external changes. However, challenges such as high installation costs and assurance of glass visibility have prompted the exploration of alternative solutions, including models incorporating partially applied smart windows., Prior research focused on useful daylight illuminance (UDI) analysis for south-facing office buildings, pointing out suitable areas for smart-window implementation to enhance lighting control. In this study, we broadened this scope by determining optimal smart-window application zones under changing building orientation. Furthermore, we studied the correlation between building orientation and smart-window deployment areas.

Analysis of Light Transmittance according to the Array Structure of Collagen Fibers Constituting the Corneal Stroma (각막실질 콜라겐섬유의 배열구조에 따른 광투과율 분석)

  • Lee, Myoung-Hee;Kim, Young-Chul
    • The Korean Journal of Vision Science
    • /
    • v.20 no.4
    • /
    • pp.561-568
    • /
    • 2018
  • Purpose : The size and regular array of the collagen fibers in the corneal stroma have very close correlation with transparency. Simulation was carried out to investigate the change of light transmittance according to the array structure and collagen fiber layer thickness. Methods : The collagen fibers in corneal stroma were arranged in regular hexagonal, hexagonal, square and random shapes with OptiFDTD simulation software, and the light transmittance was analyzed. In square array, the light transmittance according to the density change was confirmed by when the number of collagen fibers in the simulation space was the same and the light transmittance was examined when the number and density of collagen fibers were changed. Results : When the number of collagen fibers is the same, the density becomes smaller and the thickness of the fibrous layer becomes thicker in order of arrangement of square, regular hexagonal, random and hexagonal. As a result of measuring the light transmittance by changing the array structure, the light transmittance measured at the detector at the same position was almost similar regardless of the array structure. In the detectors D0, D1, D2 and D3, the maximum transmittance is shown in square, hexagonal and square, regular hexagonal and regular hexagonal array structure, and the minimum transmittance is hexagonal, random, hexagonal and square, and square array structure. However, the difference between the maximum transmittance and the minimum transmittance was almost the same within 1%. When the number of collagen fibers was the same, the light transmittance of the rectangular array structure decreased with increasing fiber layer thickness. And as the thickness increased, the light transmittance decreased more when the number of collagen fibers decreased. Conclusion : Even though the collagen array structure changed, the light transmittance is almost similar regardless of the arrangement structure. However, as the array structure was changed, the thickness of the collagen fiber layer changed, and as the thickness increased, the light transmittance decreased. In other words, the transparency of the corneal stroma is more closely related to the thickness of the fibrous layer than the array of collagen fibers.

Quality Management of ITO Thin Film for OLED Based on Relationship of Fabrication and Characteristics (OLED용 ITO박막의 공정조건과 품질특성 추론에 근거한 품질관리)

  • Seo, Jeong-Min;Park, Keun-Young;Lee, Sang-Ryong;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.4
    • /
    • pp.336-341
    • /
    • 2008
  • Recently, research on a flat panel display(FPD) has focused on organic light-emitting display(OLED) which has wide angle of view, high contrast ratio and low power consumption. ITO(Indium-Tin-Oxide) films are the most widely used material as a transparent electrode of OLED and also in many other display devices like LCD or PDP. The performance and efficiency of OLED is related to the surface condition of ITO coated glass substrate. The typical surface defect of glass substrate is measured for electric characteristics and physical condition for transmittance and roughness. Since ITO coated glass substrate can be destroyed for inspection about surface roughness, sheet resistance, film thickness and transmittance, precise fabrication condition should be made based on the estimated relationship. In this paper, ITO films were prepared on the commercial glass substrate by the Ion-Plating method changing the partial pressure of gas(Ar, 02) and the chamber temperature between $200^{\circ}C$ and $300^{\circ}C$. The characteristics of films were examined by the 4-point probe, supersonic thickness measurement, transmittance measurement and AFM. We estimated the relationship between processing parameters(Ar gas, O2 gas, Temperature) and properties of ITO films (Sheet Resistance, Film Thickness, Transmittance, Surface Roughness).

Analysis of suppressed thermal conductivity using multiple nanoparticle layers (다중층 나노구조체를 통한 열차단 특성 제어)

  • Tae Ho Noh;Ee Le Shim
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.4
    • /
    • pp.233-242
    • /
    • 2023
  • In recent years, energy-management studies in buildings have proven useful for energy savings. Typically, during heating and cooling, the energy from a given building is lost through its windows. Generally, to block the entry of ultraviolet (UV) and infrared (IR) rays, thin films of deposited metals or metal oxides are used, and the blocking of UV and IR rays by these thin films depends on the materials deposited on them. Therefore, by controlling the thicknesses and densities of the thin films, improving the transmittance of visible light and the blocking of heat rays such as UV and IR may be possible. Such improvements can be realized not only by changing the two-dimensional thin films but also by altering the zero-dimensional (0-D) nanostructures deposited on the films. In this study, 0-D nanoparticles were synthesized using a sol -gel procedure. The synthesized nanoparticles were deposited as deep coatings on polymer and glass substrates. Through spectral analysis in the UV-visible (vis) region, thin-film layers of deposited zinc oxide nanoparticles blocked >95 % of UV rays. For high transmittance in the visible-light region and low transmittance in the IR and UV regions, hybrid multiple layers of silica nanoparticles, zinc oxide particles, and fluorine-doped tin oxide nanoparticles were formed on glass and polymer substrates. Spectrophotometry in the UV-vis-near-IR regions revealed that the substrates prevented heat loss well. The glass and polymer substrates achieved transmittance values of 80 % in the visible-light region, 50 % to 60 % in the IR region, and 90 % in the UV region.

Effect of Light Transmittance Control on the Root Yield and Quality during the Growing Season of Panax ginseng (생육시기별 광량조절이 인삼의 수량 및 품질에 미치는 영향)

  • Cheon, Seong-Ki;Lee, Tae-Su;Yoon, Jong-Hyuk;Lee, Sung-Sik;Mok, Sung-Kyun
    • Journal of Ginseng Research
    • /
    • v.28 no.4
    • /
    • pp.196-200
    • /
    • 2004
  • This study was conducted to compare the root weight, yield, quality of fresh and red ginseng roots and crude saponin content in roots between fixing light transmittance(Control) and changing light transmittance(C.L.T.) during the ginseng growing seasons. The root weight in C.L.T. was higher than control by $35{\%}$ in early growth stage, $28{\%}$ in middle growth stage and $26{\%}$ in late growth stage in 6 years old ginseng plant. Root yield per 10a in C.L.T. was increased about $40{\%}$ as compared with that of control, also 1st and 2nd grade of fresh ginseng roots in C.L.T. was higher $(50.3{\%})$ compared with that $(12.9{\%})$ of control. The specific gravity of ginseng roots grown under the C.L.T. was exhibited the sig­nificant difference than control during the growing season in 4 and 6 years old ginseng plants. Red ginseng quality in C.L.T. was not only improved remarkably due to the increasement of heaven and earth grade red ginseng but also increased in crude saponin content than control. Therefore it needs to change the light transmittance(increasing light dur­ing low temperature periods and decreasing light during high temperature period) during the growing season for high yield and good qualities of ginseng roots.

Improvement of Out-coupling Efficiency of Organic Light Emitting Device by Ion-beam Plasma-treated Plastic Substrate (이온빔 플라즈마 처리된 플라스틱 기판에 의한 OLED의 광추출 효율 향상)

  • Kim, Hyeun Woo;Song, Tae Min;Lee, Hyeong Jun;Jeon, Yongmin;Kwon, Jeong Hyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.7-10
    • /
    • 2022
  • A functional polyethylene terephthalate substrate to increase light extraction efficiency of organic light-emitting diodes is studied. We formed nano-structured PET surfaces by controlling the power, gas, and exposure time of the linear ion-beam. The haze of the polyethylene terephthalate can be controlled from 0.2% to 76.0% by changing the peak-to-valley roughness of nano structure by adjusting the exposure cycle. The treated polyethylene terephthalate shows average haze of 76.0%, average total transmittance of 86.6%. The functional PET increases the current efficiency of organic light-emitting diodes by 47% compared to that of organic light-emitting diode on bare polyethylene terephthalate. In addition to polyethylene terephthalate with light extraction performance, by conducting additional research on the development of functional PET with anti-reflection and barrier performance, it will be possible to develop flexible substrates suitable for organic light-emitting diodes lighting and transparent flexible displays.

Light Efficiency Enhancement Technology of OLED: Fabrication of Random Nano External Light Extraction Composite Layer (OLED의 광 효율 향상 기술: 랜덤 나노 외부 광 추출 복합 층 제작)

  • Choi, Geun Su;Jang, Eun Bi;Seo, Ga Eun;Park, Young Wook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.39-44
    • /
    • 2022
  • The light extraction technology for improving the light efficiency of OLEDs is the core technology for extracting the light inside the OLEDs to the outside. This study demonstrates a simple method to generate random nanostructures (RNSs) containing high refractive index nanoparticles to improve light extraction and viewing angle characteristics. A simple dry low-temperature process makes the nanostructured scattering layer on the polymer resin widely used in the industry. The scattering layer has the shape of randomly distributed nanorods. To control optical properties, we focused on changing the shape and density of RNSs and adjusting the concentration of high refractive index nanoparticles. As a result, the film of the present invention exhibits a perpendicular transmittance of 85% at a wavelength of 550 nm. This film was used as a scattering layer to reduce substrate mode loss and improve EL efficiency in OLEDs.

Study on the Optical Properties of Light Diffusion Film with Plate Type Hollow Silica

  • Lee, Ji-Seon;Moon, Seong-Cheol;Noh, Kyeong-Jae;Lee, Seong-Eui
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.5
    • /
    • pp.429-437
    • /
    • 2017
  • Micro hollow plate type silica with low refraction properties was synthesized and its hollow structure was applied as an optical structure to develop a light diffusion material that simultaneously satisfies the requirements of good light diffusibility, high transmissibility, and high luminance. The developed light diffusion material was applied to a light diffusion film and the film's optical properties were assessed. Hollow silica was synthesized by precipitation method using $Mg(OH)_2$ core particles, sodium silicate, and ammonium sulfate as the silica precursors. The concentration of the silica precursor was adjusted to control hollow silica shell thickness. The total light transmittance of the light diffusion film composed of the hollow silica was 94.55%, which was 4.57% higher than that of the PC film; new film's haze was 71.20%, which was 70.9% higher. Furthermore, the luminance increased by 5.34% compared to that of the light source. The reason for the results is not only that the micro plate type hollow silica, which has a low refractive property, played a role in reducing the difference in refractive index between the medium boundaries, but also that there was a light-concentrating effect due to the changing of light paths to the front direction inside the hollow structure. Optical simulation verified the enhanced optical properties when hollow silica was applied to the light diffusion film.

Dynamic Analysis of the PDLC-based Electro-Optic Modulator for Fault Identification of TFT-LCD (박막 트랜지스터 기판 검사를 위한 PDLC 응용 전기-광학 변환기의 동특성 분석)

  • 정광석;정대화;방규용
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.92-102
    • /
    • 2003
  • To detect electrical faults of a TFT (Thin Film Transistor) panel for the LCD (Liquid Crystal Display), techniques of converting electric field to an image are used One of them is the PDLC (polymer-dispersed liquid crystal) modulator which changes light transmittance under electric field. The advantage of PDLC modulator in the electric field detection is that it can be used without physically contacting the TFT panel surface. Specific pattern signals are applied to the data and gate electrodes of the panel to charge the pixel electrodes and the image sensor detects the change of transmittance of PDLC positioned in proximity distance above the pixel electrodes. The image represents the status of electric field reflected on the PDLC so that the characteristic of the PDLC itself plays an important role to accurately quantify the defects of TFT panel. In this paper, the image of the PDLC modulator caused by the change of electric field of the pixel electrodes on the TFT panel is acquired and how the characteristics of PDLC reflect the change of electric field to the image is analyzed. When the holding time of PDLC is short, better contrast of electric field image can be obtained by changing the instance of applying the driving voltage to the PDLC.