• Title/Summary/Keyword: change of geographical range

Search Result 39, Processing Time 0.022 seconds

The Possibility of Geographical Range Change of 'Ho-Nam' as a Place Name (지명 '호남(湖南)'의 형성과 지리적 범위 변화 가능성)

  • Cho, Sung-Wook
    • Journal of the Korean association of regional geographers
    • /
    • v.14 no.3
    • /
    • pp.199-211
    • /
    • 2008
  • This study looks into existing discussion about the entry time and the geographical criteria point of 'Ho-Nam' as a place name. And discusses the reason which the geographical criteria point is not clear with emphasis on the possibility of the geographical range change of place name. The result is as follows. Firstly, the regional criteria of 'Ho-Nam' is Kum-River if we consider direction and the role as a regional barrier among the existing offered criteria. Secondary, the criteria of Ho-Nam and Ho-Seo might be different each other. A place name of Ho-Nam had appeared before Chosun period as a geographical concept and changed to the cultural concept during Chosun period. And Ho-Seo was established in Chosun period. But 'Ho-Nam=Jeon-la Province' and 'Ho-Seo=Chung-cheong Province' is established during Chosun period as a cultural concept. Thirdly, the geographical range of Ho-Nam of Go-Ryeo period and Chosun period were different each other. Fourthly, the criteria of Ho-Nam may be the Han-River if we consider the entry time and geographical range change.

  • PDF

Regional Transformation in 'Myeon' Administrative District adjacent to Urban Area (도시주변 면단위 행정구역의 지역 변화 -전라북도 조촌면을 사례로-)

  • Cho, Sung-Wook
    • Journal of the Korean association of regional geographers
    • /
    • v.12 no.1
    • /
    • pp.59-71
    • /
    • 2006
  • The purpose of this study is to explain the regional transformation in the lowest level administration district(Myeon). The major factor of regional transformation is the change of geographical range, identity of place name, the formation and change of regional center. Jo-Chon Myeon as a sample study region is located in near Jeon-Ju city. The large and dynamic city in neighbor is strong influenced to the change of geographical range. But the place name has Identity in spite of the regional change. The formation of new regional center is influenced by new road, rail road and station, japanese large farm, administration office in this district.

  • PDF

Estimating potential range shift of some wild bees in response to climate change scenarios in northwestern regions of Iran

  • Rahimi, Ehsan;Barghjelveh, Shahindokht;Dong, Pinliang
    • Journal of Ecology and Environment
    • /
    • v.45 no.3
    • /
    • pp.130-142
    • /
    • 2021
  • Background: Climate change is occurring rapidly around the world, and is predicted to have a large impact on biodiversity. Various studies have shown that climate change can alter the geographical distribution of wild bees. As climate change affects the species distribution and causes range shift, the degree of range shift and the quality of the habitats are becoming more important for securing the species diversity. In addition, those pollinator insects are contributing not only to shaping the natural ecosystem but also to increased crop production. The distributional and habitat quality changes of wild bees are of utmost importance in the climate change era. This study aims to investigate the impact of climate change on distributional and habitat quality changes of five wild bees in northwestern regions of Iran under two representative concentration pathway scenarios (RCP 4.5 and RCP 8.5). We used species distribution models to predict the potential range shift of these species in the year 2070. Result: The effects of climate change on different species are different, and the increase in temperature mainly expands the distribution ranges of wild bees, except for one species that is estimated to have a reduced potential range. Therefore, the increase in temperature would force wild bees to shift to higher latitudes. There was also significant uncertainty in the use of different models and the number of environmental layers employed in the modeling of habitat suitability. Conclusion: The increase in temperature caused the expansion of species distribution and wider areas would be available to the studied species in the future. However, not all of this possible range may include high-quality habitats, and wild bees may limit their niche to suitable habitats. On the other hand, the movement of species to higher latitudes will cause a mismatch between farms and suitable areas for wild bees, and as a result, farmers will face a shortage of pollination from wild bees. We suggest that farmers in these areas be aware of the effects of climate change on agricultural production and consider the use of managed bees in the future.

A PRELIMINARY STUDY ON THE CHARACTERIZATION OF HONEY BY NEAR INFRARED SPECTROSCOPY

  • Davies, Anthony M.C.;Radovic, Branka;Fearn, Tom;Anklam, Elke
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1052-1052
    • /
    • 2001
  • Hear infrared (NIR) spectra were measured, at five temperatures, for forty-eight samples of honey, from a variety of geographical and botanical sources, and the data has been used to explore the possibility of using NIR spectroscopy for testing label claims concerning the geographical and botanical source of honey being offered for sale to the public. These results demonstrate that the successful characterization of the botanical source of a honey may be obtained by NIR spectroscopy. Further work with large numbers of samples and groups will be required to realized this potential. Additional analysis of these data suggest that research into new ways of obtaining information on the change of absorption with temperature might be beneficial for a range of technologies.

  • PDF

Northward expansion trends and future potential distribution of a dragonfly Ischnura senegalensis Rambur under climate change using citizen science data in South Korea

  • Shin, Sookyung;Jung, Kwang Soo;Kang, Hong Gu;Dang, Ji-Hee;Kang, Doohee;Han, Jeong Eun;Kim, Jin Han
    • Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.313-327
    • /
    • 2021
  • Background: Citizen science is becoming a mainstream approach of baseline data collection to monitor biodiversity and climate change. Dragonflies (Odonata) have been ranked as the highest priority group in biodiversity monitoring for global warming. Ischnura senegalensis Rambur has been designated a biological indicator of climate change and is being monitored by the citizen science project "Korean Biodiversity Observation Network." This study has been performed to understand changes in the distribution range of I. senegalensis in response to climate change using citizen science data in South Korea. Results: We constructed a dataset of 397 distribution records for I. senegalensis, ranging from 1980 to 2020. The number of records sharply increased over time and space, and in particular, citizen science monitoring data accounted for the greatest proportion (58.7%) and covered the widest geographical range. This species was only distributed in the southern provinces until 2010 but was recorded in the higher latitudes such as Gangwon-do, Incheon, Seoul, and Gyeonggi-do (max. Paju-si, 37.70° latitude) by 2020. A species distribution model showed that the annual mean temperature (Bio1; 63.2%) and the maximum temperature of the warmest month (Bio5; 16.7%) were the most critical factors influencing its distribution. Future climate change scenarios have predicted an increase in suitable habitats for this species. Conclusions: This study is the first to show the northward expansion in the distribution range of I. senegalensis in response to climate warming in South Korea over the past 40 years. In particular, citizen science was crucial in supplying critical baseline data to detect the distribution change toward higher latitudes. Our results provide new insights on the value of citizen science as a tool for detecting the impact of climate change on ecosystems in South Korea.

Trends on Temperature and Precipitation Extreme Events in Korea (한국의 극한 기온 및 강수 사상의 변화 경향에 관한 연구)

  • Choi, Young-Eun
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.5 s.104
    • /
    • pp.711-721
    • /
    • 2004
  • The aim of this study is to clarify whether frequency and/or severity of extreme climate events have changed significantly in Korea during recent years. Using the best available daily data, spatial and temporal aspects of ten climate change indicators are investigated on an annual and seasonal basis for the periods of 1954-1999. A systematic increase in the $90^{th}$ percentile of daily minimum temperatures at most of the analyzed areas has been observed. This increase is accompanied by a similar reduction in the number of frost days and a significant lengthening of the thermal growing season. Although the intra-annual extreme temperature range is based on only two observations, it provides a very robust and significant measure of declining extreme temperature variability. The five precipitation-related indicators show no distinct changing patterns for spatial and temporal distribution except for the regional series of maximum consecutive dry days. Interestingly, the regional series of consecutive dry days have increased significantly while the daily rainfall intensity index and the fraction of annual total precipitation due to events exceeding the $95^{th}$ percentile for 1901-1990 normals have insignificantly increased.

Prediction of present and future distribution of the Schlegel's Japanese gecko (Gekko japonicus) using MaxEnt modeling

  • Kim, Dae-In;Park, Il-Kook;Bae, So-Yeon;Fong, Jonathan J.;Zhang, Yong-Pu;Li, Shu-Ran;Ota, Hidetoshi;Kim, Jong-Sun;Park, Daesik
    • Journal of Ecology and Environment
    • /
    • v.44 no.1
    • /
    • pp.33-40
    • /
    • 2020
  • Background: Understanding the geographical distribution of a species is a key component of studying its ecology, evolution, and conservation. Although Schlegel's Japanese gecko (Gekko japonicus) is widely distributed in Northeast Asia, its distribution has not been studied in detail. We predicted the present and future distribution of G. japonicus across China, Japan, and Korea based on 19 climatic and 5 environmental variables using the maximum entropy (MaxEnt) species distribution model. Results: Present time major suitable habitats for G. japonicus, having greater than 0.55 probability of presence (threshold based on the average predicted probability of the presence records), are located at coastal and inland cities of China; western, southern, and northern coasts of Kyushu and Honshu in Japan; and southern coastal cities of Korea. Japan contained 69.3% of the suitable habitats, followed by China (27.1%) and Korea (4.2%). Temperature seasonality (66.5% of permutation importance) was the most important predictor of the distribution. Future distributions according to two climate change scenarios predicted that by 2070, and overall suitable habitats would decrease compared to the present habitats by 18.4% (scenario RCP 4.5) and 10.4% (scenario RCP 8.5). In contrast to these overall trends, range expansions are expected in inland areas of China and southern parts of Korea. Conclusions: Suitable habitats predicted for G. japonicus are currently located in coastal cities of Japan, China, and Korea, as well as in isolated patches of inland China. Due to climate change, suitable habitats are expected to shrink along coastlines, particularly at the coastal-edge of climate change zones. Overall, our results provide essential distribution range information for future ecological studies of G. japonicus across its distribution range.

A Characteristics of Directional Orientation of the Houses on Sangas, Imha, Hawoosan, Walgok Traditional Villages of Geomantic North (북향형국(北向形局)의 전통마을에서 주택의 방위적(方位的) 특성에 관한 연구 - 상사, 임하, 하우산, 월곡 마을을 중심으로 -)

  • Lee, Hyun-Byung;Kim, Sung-Woo
    • Journal of architectural history
    • /
    • v.18 no.3
    • /
    • pp.27-44
    • /
    • 2009
  • In Korea, the direction of houses are typically determined by considering the directional orientation and shape of the mountain range rather than ignoring the geographical feature of the mountain range. Traditional villages of Korea are known to have very particular ways of adopting the geomantic surroundings of natural environment. This is very true especially have a high mountain in the back and a lower mountain in front. At the same time, most of the houses tend to prefer south as a man direction so that they can receive more sun light. However, if the mountain range faces north, it will not be easy to determine the directional orientation of houses. This paper, therefore, tries to identify how the houses of villages facing north, direst the orientation. This, the northern village, solves the problem by facing all direction rather than one major direction. The houses of the villages facing north, tend to revise the direction by changing the back mountain(주산) or front mountain(인산) that helps them change the direction towards he range of eastern or western direction. As a result, the houses tend to the direction towards east and wes compared to north and south. The directional orientation of houses was clearly distributed or concentrated by depending of the shape and directional orientation of the mountain range. This kind of research let us know the relationship between the natural north direction, the direction of geomantic surrounding, and the direction of houses in traditional Korean villages.

  • PDF

The Change of the Depositional Environment on Dodaecheon River Basin during the Middle Holocene (Holocene 中期에 있어서 道垈川流域의 堆積 環境 變化)

  • Hwang, Sang-Ill;Yoon, Soon-Ock;Jo, Wha-Ryong
    • Journal of the Korean Geographical Society
    • /
    • v.32 no.4
    • /
    • pp.403-420
    • /
    • 1997
  • Dodaecheon is a small river flowing into Asan Bay which is located in the middle part of the West Coast of the Korean Penninsula. We have investigated the change of depositional environment in Dodaecheon river basin during the middle Holocene. In the course of the research, the methods such as boring, radiocarbon dating, diatom and pollen analysis were employed. The Holocene deposits of the studied area are consisted of peat and gray silt layers, and contain many plooen and diatom fossils. Based on the results of diatom and pollen analysis, we conclude that the gray silt layers were sedimented owing to the transgression in the middle Holocene, and the peat layers by the regression or stabilzation of the sea level. The shoreline in the Post Glacial Age reached to the rivemouth of Dodaecheon at ca. 7,000 years before present(y. BP) and at that time the high tide sea-level(mean high water level of spring tide) rose to ca. 3m above present mean sea-level(m.a.s.l.). Since then to ca. 6,000y. BP, the high tide sea-level arrived to ca. 5m above present mean sea level further repeating minor transgressions and regressions. The peat layers of the coastal lowland of the West Coast were formed by the sea level fluctuations from 7,000 y. BP to 3,000 y. BP, and they were distributed 2 to 6 meters higher than the mean sea level of the present day. Most of them sedimented due to the high tide level are older and higher than those of the East Coast which were formed at the swale in the low tidal range environment.

  • PDF

Northern distribution limits and future suitable habitats of warm temperate evergreen broad-leaved tree species designated as climate-sensitive biological indicator species in South Korea

  • Sookyung, Shin;Jung-Hyun, Kim;Duhee, Kang;Jin-Seok, Kim;Hong Gu, Kang;Hyun-Do, Jang;Jongsung, Lee;Jeong Eun, Han;Hyun Kyung, Oh
    • Journal of Ecology and Environment
    • /
    • v.46 no.4
    • /
    • pp.292-303
    • /
    • 2022
  • Background: Climate change significantly influences the geographical distribution of plant species worldwide. Selecting indicator species allows for better-informed and more effective ecosystem management in response to climate change. The Korean Peninsula is the northernmost distribution zone of warm temperate evergreen broad-leaved (WTEB) species in Northeast Asia. Considering the ecological value of these species, we evaluated the current distribution range and future suitable habitat for 13 WTEB tree species designated as climate-sensitive biological indicator species. Results: Up-to-date and accurate WTEB species distribution maps were constructed using herbarium specimens and citizen science data from the Korea Biodiversity Observation Network. Current northern limits for several species have shifted to higher latitudes compared to previous records. For example, the northern latitude limit for Stauntonia hexaphylla is higher (37° 02' N, Deokjeokdo archipelago) than that reported previously (36° 13' N). The minimum temperature of the coldest month (Bio6) is the major factor influencing species distribution. Under future climate change scenarios, suitable habitats are predicted to expand toward higher latitudes inland and along the western coastal areas. Conclusions: Our results support the suitability of WTEB trees as significant biological indicators of species' responses to warming. The findings also suggest the need for consistent monitoring of species distribution shifts. This study provides an important baseline dataset for future monitoring and management of indicator species' responses to changing climate conditions in South Korea.