DOI QR코드

DOI QR Code

Prediction of present and future distribution of the Schlegel's Japanese gecko (Gekko japonicus) using MaxEnt modeling

  • Kim, Dae-In (Department of Biology, Kangwon National University) ;
  • Park, Il-Kook (Department of Biology, Kangwon National University) ;
  • Bae, So-Yeon (Department of Animal Ecology and Tropical Biology (Zoology III) Biocenter, University of Wurzburg) ;
  • Fong, Jonathan J. (Science Unit, Lingnan University) ;
  • Zhang, Yong-Pu (College of Life and Environmental Sciences, Wenzhou University) ;
  • Li, Shu-Ran (College of Life and Environmental Sciences, Wenzhou University) ;
  • Ota, Hidetoshi (Institute of Natural and Environmental Sciences, University of Hyogo) ;
  • Kim, Jong-Sun (Division of Science Education, Kangwon National University) ;
  • Park, Daesik (Division of Science Education, Kangwon National University)
  • Received : 2019.10.07
  • Accepted : 2020.01.07
  • Published : 2020.03.31

Abstract

Background: Understanding the geographical distribution of a species is a key component of studying its ecology, evolution, and conservation. Although Schlegel's Japanese gecko (Gekko japonicus) is widely distributed in Northeast Asia, its distribution has not been studied in detail. We predicted the present and future distribution of G. japonicus across China, Japan, and Korea based on 19 climatic and 5 environmental variables using the maximum entropy (MaxEnt) species distribution model. Results: Present time major suitable habitats for G. japonicus, having greater than 0.55 probability of presence (threshold based on the average predicted probability of the presence records), are located at coastal and inland cities of China; western, southern, and northern coasts of Kyushu and Honshu in Japan; and southern coastal cities of Korea. Japan contained 69.3% of the suitable habitats, followed by China (27.1%) and Korea (4.2%). Temperature seasonality (66.5% of permutation importance) was the most important predictor of the distribution. Future distributions according to two climate change scenarios predicted that by 2070, and overall suitable habitats would decrease compared to the present habitats by 18.4% (scenario RCP 4.5) and 10.4% (scenario RCP 8.5). In contrast to these overall trends, range expansions are expected in inland areas of China and southern parts of Korea. Conclusions: Suitable habitats predicted for G. japonicus are currently located in coastal cities of Japan, China, and Korea, as well as in isolated patches of inland China. Due to climate change, suitable habitats are expected to shrink along coastlines, particularly at the coastal-edge of climate change zones. Overall, our results provide essential distribution range information for future ecological studies of G. japonicus across its distribution range.

Keywords

References

  1. Acheson ES, Kerr JT. Nets versus spraying: a spatial modelling approach reveals indoor residual spraying targets Anopheles mosquito habitats better than mosquito nets in Tanzania. PLoS One. 2018;13(10):e0205270. https://doi.org/10.1371/journal.pone.0205270
  2. Angilletta MJ Jr, Montgomery LG, Werner YL. Temperature preference in geckos:diel variation in juveniles and adults. Herpetologica. 1999;55:212-22.
  3. Berriozabal-Islas C, Rodrigues JFM, Ramirez-Bautista A, Becerra-Lopez JL, Nieto-Montes de Oca A. Effect of climate change in lizards of the genus Xenosaurus (Xenosauridae) based on projected changes in climatic suitability and climatic niche conservation. Ecol Evol. 2018;8:6860-71. https://doi.org/10.1002/ece3.4200
  4. Bonino MF, Moreno Azόcar DL, Schulte JA II, Cruz FB. Climate change and lizards:changing species’ geographic ranges in Patagonia. Reg Environ Chang. 2015;15:1121-32. https://doi.org/10.1007/s10113-014-0693-x
  5. Buckland S, Cole NC, Aguirre-Gutierrez J, Gallagher LE, Henshaw SM, Besnard A, Tucker RM, Bachraz V, Ruhomaun K, Harris S. Ecological effects of the invasive giant Madagascar day gecko on endemic Mauritian geckos: applications of binomial-mixture and species distribution models. PLoS One. 2014;9(4):e88798. https://doi.org/10.1371/journal.pone.0088798
  6. Cantor T. General features of Chusan, with remarks on the flora and fauna of that island. Ann Mag Nat Hist London. 1842;9:486-9.
  7. Cianfrani C, Lay GL, Hirzel AH, Loy A. Do habitat suitability models reliably predict the recovery areas of threatened species? J Appl Ecol. 2010;47:421-30. https://doi.org/10.1111/j.1365-2664.2010.01781.x
  8. Collins WJ, Bellouin N, Doutriaux-Boucher M, Gedney N, Halloran P, Hinton T, Hughes J, Jones CD, Joshi M, Liddicoat S, Martin G, O’Connor F, Rae J, Senior C, Sitch S, Totterdell I, Wiltshire A, Woodward S. Development and evaluation of an earth-system model-HadGEM2. Geosci Model Dev. 2011;4:997-1062. https://doi.org/10.5194/gmdd-4-997-2011
  9. Dumeril AMC, Bibron G. Erpetologie Generale ou Histoire Naturelle Complete des Reptiles, vol. 3. Paris: Librairie Encyclopedique Roret; 1836.
  10. Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz MS, Zimmermann NE. Novel methods improve prediction of species’ distributions from occurrence data. Ecography. 2006;29:129-51. https://doi.org/10.1111/j.2006.0906-7590.04596.x
  11. Fattahi R, Ficetola GF, Rastegar-Pouyani N, Avci A, Kumlutas Y, Ilgaz C, Yousefkhani SSH. Modeling the potential distribution of the Bridled skink, Trachylepis vittata (Olivier, 1804), in the Middle East. Zool Middle East. 2014;60:208-16. https://doi.org/10.1080/09397140.2014.944428
  12. Fischer JD, Schneider SC, Ahlers AA, Miller JR. Categorizing wildlife responses to urbanization and conservation implications of terminology. Conserv Biol. 2015;29:1246-8. https://doi.org/10.1111/cobi.12451
  13. Fourcade Y, Engler JO, Rodder D, Secondi J. Mapping species distributions with MaxEnt using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS One. 2014;9(5):e97122. https://doi.org/10.1371/journal.pone.0097122
  14. Francis RA, Chadwick MA. What makes a species synurbic? Appl Geogr. 2011;32:514-21. https://doi.org/10.1016/j.apgeog.2011.06.013
  15. Franklin J. Mapping species distributions: spatial inference and prediction. Cambridge: Cambridge University Press; 2009.
  16. Fujisaki I, Mazzotti FJ, Watling J, Krysko KL, Escribano Y. Geographic risk assessment reveals spatial variation in invasion potential of exotic reptiles in an invasive species hotspot. Herpetol Conserv Biol. 2014;10:621-32.
  17. Gibbons JW, Scott DE, Ryan TJ, Buhlmann KA, Tuberville TD, Metts BS, Greene JL, Mills T, Leiden Y, Poppy S, Winne CT. The global decline of reptiles. Deja Vu amphibians BioScience. 2000;50:653-66.
  18. Guisan A, Thuiller W. Predicting species distribution: offering more than simple habitat models. Ecol Lett. 2005;8:993-1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x
  19. Huang Y, Dai Q, Chen Y, Wan H, Li J, Wang Y. Lizard species richness patterns in China and its environmental associations. Biodivers Conserv. 2011;20:1399-414. https://doi.org/10.1007/s10531-011-0033-0
  20. Huey RB, Tewksbury JJ. Can behavior douse the fire of climate warming? PNAS. 2009;106:3647-8. https://doi.org/10.1073/pnas.0900934106
  21. IPCC. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2013.
  22. Jimenez-Valverde A. Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modeling. Glob Ecol Biogeogr. 2012;21:498-507. https://doi.org/10.1111/j.1466-8238.2011.00683.x
  23. Kim DI. Species distribution modeling, microhabitat use, and morphological variation of the Schlegel's Japanese gecko (Gekko japonicus). Doctoral Dissertation, Kangwon National University; 2019b.
  24. Kim DI, Choi WJ, Park IK, Kim JS, Kim IH, Park D. Comparisons of microhabitat use of Schlegel’s Japanese gecko (Gekko japonicus) among three populations and four land cover types. J Ecol Environ. 2018;42(11):198-204.
  25. Kim DI, Park IK, Kim JS, Ota H, Choi WJ, Kim IH, Park D. Spring and summer microhabitat use by Schlegel’s Japanese gecko, Gekko japonicus (Reptilia:Squamata: Gekkonidae), in urban areas. Anim Cells Syst. 2019;23:64-70. https://doi.org/10.1080/19768354.2018.1554542
  26. Kim HT, Bae YH, Kim H, Kim D, Borzee A. Gekko japonicus (Schlegel’s Japanese gecko). Herpetol Rev. 2017;48:588.
  27. Kim JS. Analysis of genetic diversity and relationship of the Schlegel's Japanese gecko (Gekko japonicus). MS Thesis, Kangwon National University; 2019a.
  28. Kraus F. Impacts from invasive reptiles and amphibians. Annu Rev Ecol Evol Syst. 2015;46:75-97. https://doi.org/10.1146/annurev-ecolsys-112414-054450
  29. Lee JN, Kang SG, Lee IS. The study on the Gekko japonicus in Korea. Bull Basic Sci Res Inst Kyeongsung Univ. 2004;16:57-63.
  30. Leutner B, Horning N. RStoolbox: tools for remote sensing data analysis. R package version 0.1.9. https://CRAN.R-project.org/package=RStoolbox; 2017.
  31. Lin TE, Chen TY, Wei HL, Richard R, Huang SP. Low cold tolerance of the invasive lizard Eutropis multifasciata constrains its potential elevation distribution in Taiwan. J Therm Biol. 2019;82:115-22. https://doi.org/10.1016/j.jtherbio.2019.03.015
  32. Liu C, Berry PM, Dawson TP, Pearson RG. Selecting thresholds of occurrence in the prediction of species distributions. Ecography. 2005;28:385-93. https://doi.org/10.1111/j.0906-7590.2005.03957.x
  33. Mazzotti FJ, Cherkiss MS, Hart KM, Snow RW, Rochford MR, Dorcas ME, Reed RN. Cold-induced mortality of invasive Burmese pythons in South Florida. Biol Invasions. 2011;13:143-51. https://doi.org/10.1007/s10530-010-9797-5
  34. McCarthy MP, Best MJ, Betts RA. Climate change in cities due to global warming and urban effects. Geophys Res Lett. 2010;37:L09705. https://doi.org/10.1029/2010GL042845
  35. McKinney ML. Urbanization, biodiversity, and conservation: the impacts of urbanization on native species are poorly studied, but educating a highly urbanized human population about these impacts can greatly improve species conservation in all ecosystems. BioScience. 2002;52:883-90. https://doi.org/10.1641/0006-3568(2002)052[0883:UBAC]2.0.CO;2
  36. Mitsuhashi I, Sasa K, Li Z, Gao H, Kim HS. Future development of sea transportation corridors in Northeast Asia. Proc East Asia Soc Transp Stud. 2005;5:1687-702.
  37. Norberg A, Abrego N, Blanchet FG, Adler FR, Anderson BJ, Anttila J, Araujo MB, Dallas T, Dunson D, Elith J, Foster SD, Fox R, Franklin J, Godsoe W, Guisan A, O’Hara B, Hill NA, Holt RD, FKC H, Husby M, Kalas JA, Lehikoinen A, Luoto M, Mod HK, Newell G, Renner I, Roslin T, Soininen J, Thuiller W, Vanhatalo J, Warton D, White M, Zimmermann NE, Gravel D, Ovaskainen O. A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecol Monog. 2019;89(3):e01370.
  38. Ofori BY, Stow AJ, Baumgartner JB, Beaumont LJ. Combining dispersal, landscape connectivity and habitat suitability to assess climate-induced changes in the distribution of Cunningham’s skink, Egernia cunninghami. PLoS One. 2017;12(9):e0184193. https://doi.org/10.1371/journal.pone.0184193
  39. Ortega-Huerta MA, Peterson AT. Modeling ecological niches and predicting geographic distributions: a test of six presence-only methods. Rev Mex Biodivers. 2008;79:205-16.
  40. Park IK, Kim DI, Fong JJ, Park D. Home range size and overlap of the small nocturnal Schlegel’s Japanese gecko (Gekko japonicus), introduced into a suburban city park. Asian Hereptol Res. 2019;10(4):261-9.
  41. Parmesan C. Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Syst. 2006;37:637-69. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100
  42. Parris KM. Ecology of urban environments. West Susses: Wiley; 2016.
  43. Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modelling of species geographic distributions. Ecol Model. 2006;190:231-59. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  44. Phillips SJ, Dudik M, Elith J, Graham CH, Lehmann A, Leathwick J, Ferrier S. Simple selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl. 2009;19:181-97. https://doi.org/10.1890/07-2153.1
  45. R Core Team. R: a language and environment for statistical computing. Vienna: URL https://www.R-project.org/: R Foundation for Statistical Computing; 2018.
  46. Rehm EM, Olivas P, Stroud J, Feeley KJ. Losing your edge: climate change and the conservation value of range-edge populations. Ecol Evol. 2015;5:4315-26. https://doi.org/10.1002/ece3.1645
  47. Ribeiro LB, Gomides SC, Ferreira JVA, Magalhaes AJC Jr. Modeling the potential geographic distribution of the poorly known neotropical lizard Anotosaura vanzolinia Dixon, 1974 (Squamata, Gymnophthalmidae) in Northeast Brazil. Turkish J Zool. 2018;42:732-8. https://doi.org/10.3906/zoo-1803-26
  48. Rodder D, Sole M, Bohme W. Predicting the potential distributions of two alien invasive Housegeckos (Gekkonidae: Hemidactylus frenatus, Hemidactylus mabouia). North-West J Zool. 2008;4:236-46.
  49. Samy AM, Elaagip AH, Kenawy MA, Ayres CFJ, Peterson AT, Soliman DE. Climate change influences on the global potential distribution of the mosquito Culex quinquefasciatus, vector of West Nile virus and lymphatic filariasis. PLoS One. 2016;11(10):e0163863. https://doi.org/10.1371/journal.pone.0163863
  50. Sancholi N. Effects of climate change on Paralaudakia lehmanni (Nicolsky, 1896) (Reptilia: Agamidae) in Central Asia. Contemp Prob Ecol. 2018;11(6):682-6. https://doi.org/10.1134/S199542551806015X
  51. Sinervo B, Mendez-de-la-Cruz F, Miles DB, Heulin B, Bastiaans E, Villagran-Santa Cruz M, Lara-Resendiz R, Martinez-Mendez N, Calderon-Espinosa ML, Meza-Lazaro RN, Gadsden H, Avila LJ, Morando M, De la Riva IJ, Sepulveda RV, Rocha CFD, Ibarguengoytia N, Puntriano CA, Massot M, Lepetz V, Oksanen TA, Chapple DG, Bauer AM, Branch WR, Clobert J, Sites JW Jr. Erosion of lizard diversity by climate change and altered thermal niches. Science. 2010;328:894-9. https://doi.org/10.1126/science.1184695
  52. Solhjouy-Fard S, Sarafrazi A, Moeini MM, Ahadiyat A. Predicting habitat distribution of five heteropteran pest species in Iran. J Insect Sci. 2012;13(1):116.
  53. Son SB, Lee SC, Lee YW, Cho YK. Introduction of Schlegel’s Japanese gecko (Gekko japonicus). Nature Ecol. 2008;13:10-29.
  54. Srinivasulu A, Srinivasulu C. All that glitters is not gold: a projected distribution of the endemic Indian golden gecko Calodactylodes aureus (Reptilia: Squamata:Gekkonidae) indicates a major range shrinkage due to future climate change. JoTT. 2016;8(6):8883-92.
  55. Stejneger L. Herpetology of Japan and adjacent territory (no. 58). Washington:Government Print Office; 1907.
  56. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFM, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE. Extinction risk from climate change. Nature. 2004;427:145-8. https://doi.org/10.1038/nature02121
  57. Toda M, Hikida T, Okada S, Ota H. Contrasting patterns of genetic variation in the two sympatric geckos Gekko tawaensis and G. japonicas (Reptilia: Squamata) from western Japan, as revealed by allozyme analyses. Heredity. 2003;90:90-7. https://doi.org/10.1038/sj.hdy.6800183
  58. Toda M, Yoshida T. Issues and perspectives regarding invasive alien species of amphibians and reptiles in Japan. Bull Herpetol Soc Jpn. 2005;2005:139-49.
  59. Todd BD, Willson JD, Gibbons JW. The global status of reptiles and causes of their decline. In: Sparling DW, Linder G, Bishop CA, Krest S, editors. Ecotoxicology of amphibians and reptiles. Boca Raton: CRC Press; 2010.
  60. Urban MC. Accelerating extinction risk from climate change. Science. 2015;348:571-3. https://doi.org/10.1126/science.aaa4984
  61. Wada T. Distribution of house-dwelling geckos in Japan, based on a research using questionnaire. Shizenshi-Kenkyu. 2003;3(2):2-19 (in Japanese).
  62. Weterings R, Vetter KC. Invasive house geckos (Hemidactylus spp.): their current, potential and future distribution. Curr Zool. 2018;64(5):559-73. https://doi.org/10.1093/cz/zox052
  63. Zhang Y, Chen C, Li L, Zhao C, Chen W, Huang Y. Insights from ecological niche modeling on the taxonomic distinction and niche differentiation between the black-spotted and red-spotted tokay geckos (Gekko gecko). Ecol Evol. 2014;4:3383-94. https://doi.org/10.1002/ece3.1183
  64. Zhang YP, Du WG, Zhu LJ. Differences in body size and female reproductive traits between two sympatric geckos, Gekko japonicus and Gekko hokouensis. Folia Zool. 2009;58:113-22.
  65. Zhao EM, Adler K. Herpetology of China. Oxford: Society for the Study of Amphibians and Reptiles; 1993.
  66. Zhou KY, Liu YZ, Li DJ. Three new species of Gekko and remarks on Gekko hokouensis (Lacertiformes, Gekkonidae). Acta Zootaxon Sin. 1982;7:438-46.

Cited by

  1. Genetic diversity and inferred dispersal history of the Schlegel’s Japanese Gecko (Gekko japonicus) in Northeast Asia based on population genetic analyses and paleo-species distribution modellin vol.31, pp.3, 2020, https://doi.org/10.1080/24701394.2020.1742332
  2. Distribution, Habitat Associations and Conservation Status of the Sri Lanka Frogmouth Batrachostomus moniliger vol.69, pp.1, 2022, https://doi.org/10.13157/arla.69.1.2022.ra5