• Title/Summary/Keyword: cerebral metabolites

Search Result 19, Processing Time 0.027 seconds

Comparison of Proton T1 and T2 Relaxation Times of Cerebral Metabolites between 1.5T and 3.0T MRI using a Phantom (모형을 이용한 1.5T와 3.0T 자기공명에서의 뇌 대사물질들의 수소 T1과 T2 이완시간의 비교)

  • Kim, Ji-Hoon;Chang, Kee-Hyun;Song, In-Chan
    • Investigative Magnetic Resonance Imaging
    • /
    • v.12 no.1
    • /
    • pp.20-26
    • /
    • 2008
  • Purpose : To present the T1 and T2 relaxation times of the major cerebral metabolites at 1.5T and 3.0T and compare those between 1.5T and 3.0T. Materials and Methods : Using the phantom containing N-acetyl aspartate (NAA), Choline (Cho), and Creatine (Cr) at both 1.5T and 3.0T MRI, the T1 relaxation times were calculated from the spectral data obtained with 5000 ms repetition time (TR), 20 ms echo time (TE), and 11 different mixing time (TM)s using STEAM (STimulated Echo-Acquisition Mode) method. The T2 relaxation times were obtained from the spectral data obtained with 3000 ms TR and 5 different TEs using PRESS (Point-RESolved Spectroscopy) method. The T1 and T2 relaxation times obtained at 1.5T were compared with those of 3.0T. Results : The T1 relaxation times of NAA were $2293\;{\pm}\;48\;ms$ at 1.5T and $2559\;{\pm}\;124\;ms$ at 3.0T (11.6% increase at 3.0T). The T1 relaxation times of Cho were $2540\;{\pm}\;57\;ms$ at 1.5T and $2644\;{\pm}\;76\;ms$ at 3.0T (4.1% increase at 3.0T). The T1 relaxation times of Cr were $2543\;{\pm}\;75\;ms$ at 1.5T and $2665\;{\pm}\;94\;ms$ at 3.0T (4.8% increase). The T2 relaxation times of NAA were $526\;{\pm}\;81\;ms$ at 1.5T and $468\;{\pm}\;74\;ms$ at 3.0T (11.0% decrease at 3.0T). The T2 relaxation times of Cho were $220\;{\pm}\;44ms$ at 1.5T and $182\;{\pm}\;35\;ms$ at 3.0T (17.3% decrease at 3.0T). The T2 relaxation times of Cr were $289\;{\pm}\;47\;ms$ at 1.5T and $275\;{\pm}\;57\;ms$ at 3.0T (4.8% decrease at 3.0T). Conclusion : The T1 relaxation times of the major cerebral metabolites (NAA, Cr, Cho), which were measured at the phantom, were 4.1%-11.6% longer at 3.0T than at 1.5T. The T2 relaxation times of them were 4.8%-17.3% shorter at 3.0T than at 1.5T. To optimize MR spectroscopy at 3.0T, TR should be lengthened and TE should be shortened.

  • PDF

Effect of Fermented Garlic Extract Containing Nitric Oxide Metabolites on Impairments of Memory and of Neural Plasticity in Rat Model of Vascular Dementia (산화질소 대사체 함유 마늘 발효 추출물 이용 혈관성 치매 흰쥐 모델의 기억력 및 신경가소성 장애 개선 효과)

  • Zhang, Xiaorong;Moon, Se Jin;Kim, Yoo Ji;Jeong, Sun Oh;Kim, Min Sun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.36 no.2
    • /
    • pp.59-65
    • /
    • 2022
  • Rodent model for chronic cerebral hypoperfusion caused by bilateral carotid artery occlusion (BCAO) show clinically relevant evidences for vascular dementia and impairments of synaptic plasticity in the hippocampus. The purpose of this study was to evaluate effect of fermented garlic (F-Garlic) extract with NO metabolites on cognitive behaviors, synaptic plasticity, and molecular events in the hippocampus following BCAO. Adult male Sprague-Dawley rats were randomly divided three experimental groups into: control+water; BCAO+water; BCAO+F-Garlic. Animals were treated with oral administration of F-Garlic in tap water as a drinking water after surgery for 4 weeks. On passive avoidance test and Y-maze test, BCAO+water showed a significant decrease in step-through latency and spontaneous alteration, indicating deficit of hippocampal memory formation but the treatment of F-Garlic significantly increased these cognitive behaviors. In control+water, a robust increase in the amplitude of evoked field excitatory postsynaptic potentials was observed by theta burst stimulation to hippocampal neural circuit indicating formation of long-term potentiation (LTP) in the hippocampal CA1. BCAO+water showed a highly significant deficit in LTP induction 4 weeks after BCAO. On other hand, daily oral administration of F-Garlic extract caused the marked preservation of LTP induction. Moreover, parvalbumin was markedly reduced in the CA1, especially, in the stratum radiatum of BCAO+water. In contrast, BCAO+F-Garlic mitigate a significantly reduction of the parvalbumin. In summary, these results suggest that daily oral administration of F-Garlic extract can ameliorate cognitive memory deficit through the preservation of synaptic plasticity and interneurons integrity in the hippocampus in rodent model of chronic cerebral hypoperfusion.

Antidepressant effect of chunwangboshimdan and its influence on monoamines (천왕보심단(天王補心丹)의 항우울효과 및 monoamine 대사에 미치는 영향)

  • Park Jong-Heum;Bae Chang-wook;Jun Hyun-Suk;Hong Sung-You;Park Sun-Dong
    • Herbal Formula Science
    • /
    • v.12 no.2
    • /
    • pp.77-93
    • /
    • 2004
  • Depression is a sort of mental disorder which is very common. To treat depression, many drugs such as TCA, MAOI are developed and used. But they have a lot of side effects, so it needs to develop drugs without side effects or with less side effects. Herbal medicines have been used to treat diseases not only physical but also mental and have less side effects. therefore, it has been thoght the need to develop herbal medicine with antidepressant effect. The purpose of this study was to reseach antidepressant effect and influence on monoamines of chunwangboshimdan thought to have antidepressant according to ancient medical book- donguibogam- and recent reports. We used 'forced swimming test(FST)' to know antidepressant effect of chunwangboshimdan and HPLC to check the influence on monoamines and their metabolites(norepinephrine, dopamine, DOPAC, HVA, serotonin, 5-HIAA) of chunwangboshimdan after divided into cerebral cortex, striatum, hypothalamus and hippocampus. The results were obtained as follows: In the study of antidepressant effect by 'forced swimming test(FST)'method, chunwang boshimdan had a significant antidepressant effect. In the study of influence on monoamines by HPLC, chunwangboshimdan mainly increased dopamine among monoamines and their metabolites(norepinephrine, dopamine, DOPAC, HVA, serotonin, 5-HIAA) significantly in 4 parts of rat's brain above-mentioned. Calculated by turnover ratio formulae of monoamine, chunwangboshimdan has more results than Imipramine. These results suggest that chunwangboshimdan has antidepressant effect that is related with the increase of monoamines by suppressing their metabolism as its mechanism.

  • PDF

Effect of t-butylhydroperoxide on $Na^+-dependent$ Glutamate Uptake in Rabbit Brain Synaptosome

  • Lee, Hyun-Je;Kim, Yong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.4
    • /
    • pp.367-376
    • /
    • 1997
  • The effect of an organic peroxide, t-butylhydroperoxide (t-BHP), on glutamate uptake was studied in synaptosomes prepared from cerebral cortex. t-BHP inhibited the $Na^+-dependent$ glutamate uptake with no change in the $Na^+-independent$ uptake. This effect of t-BHP was not altered by addition of $Ca^{2+}$ channel blockers (verapamil, diltiazem and nifedipine) or $PLA_2$ inhibitors (dibucaine, butacaine and quinacrine). However, the effect was prevented by iron chelators (deferoxamine and phenanthroline) and phenolic antioxidants (N,N'-diphenyl-phenylenediamine, butylated hydroxyanisole, and butylated hydroxytoluene). At low concentrations (<1.0 mM), t-BHP inhibited glutamate uptake without altering lipid peroxidation. Moreover, a large increase in lipid peroxidation by $ascorbate/Fe^{2+}$ was not accompanied by an inhibition of glutamate uptake. The impairment of glutamate uptake by t-BHP was not intimately related to the change in $Na^+-K+-ATPase$ activity. These results suggest that inhibition of glutamate uptake by t-BHP is not totally mediated by peroxidation of membrane lipid, but is associated with direct interactions of glutamate transport proteins with t-BHP metabolites. The $Ca^{2+}$ influx through $Ca^{2+}$ channel or $PLA_2$ activation may not be involved in the t-BHP inhibition of glutamate transport.

  • PDF

Neurotransmitter and Neuroendocrine Markers as Predictors of Therapeutic Responses In Psychiatric Disorders (신경전달물질 및 신경내분비 Marker를 이용한 치료반응의 평가)

  • Han, Chang-Hwan
    • Korean Journal of Biological Psychiatry
    • /
    • v.2 no.1
    • /
    • pp.3-19
    • /
    • 1995
  • Numerous investigators have conducted extensive investigation in the search for biological markers in psychiatric illness. There are, as a test of q biological approach to the diagnosis of the psychiatric illness, tests for the neurotransmitters, their metabolites, and related enzymes, the neurotransmitter receptors, the neuroendocrine output and response, the membrane transport, peptides and eletrolytes. They are called the biological markers, and they are helpful for the diagnosis or differential diagnosis, choice of treatment or drugs, symptom improvement, predictor of recurrence and anticipation of suicidal attempt. These studies are among the main purposes that are pursued in the neuroscience and based on the potential utility of the biological markers mentioned above. Since 1970's, lots 01 biological markers' studies for the diagnosis, differential diagnosis or subtypes differentiation have been done but varieties of different opinions have been drawn since then through they could explain the charaters of main psychiatric illness(especially schizophrenia and mood disorder). But, the search for biological markers, including displines of neuroendoclinology and neurochemistry(neurotransmitter and thair metabolite), has yielded a number of putative trait merkers and state markers for psychayric illness. This paper aims to anticipate or evaluate the good response to the therapy(Therpeutic response) with lots of markers. Acoording to the diagnosis of lots of diseases or subtypes, we are going to review the papers, mainly concern with 'Is there any Marker' or 'Is any test possible to detect the improvement clinically?' 'Is it possible to predict the recurrence or good prognsis?' or 'Is it possible to select any drug or therapy to bring the good response?' The biological tests to review are mainly the metabolites of catecholamine neurotransmitter, and especially neuroendocrine test based on the knowledge that hormons of the adenohypophysis are influenced by activity of the cerebral or limbic neurons as well as the hypothalamus ones. Among them, author introduced some clinically available tests that are DST, TRH stimulation test(TRHST), GH stimulation test, and the urine MHPG test that can give us the evaluation of the treatment response, the predictor for recurrence or choice of drug that can bring a good response. So author discussed thair potential utility in clarifying, therapeutic, and prognostic issues in psychatric illness. We hope they'll be used and look forward to more active study on the different opinion.

  • PDF

The Effect of Woohwangcheongsim-won on Circulatory Disturbance in Diabetes (우황청심원이 당뇨병 Rat의 혈액순환장애에 미치는 영향)

  • 황성록;정승현;신길조;이원철
    • The Journal of Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.164-179
    • /
    • 2002
  • Object: Death rate due to hypertension, atherosclerosis, ischemic heart disease and cerebral infarction induced by Westernized diet and increased average life span is on the rise. Decrease in blood circulation, activation of thrombus generation and intravascular lipid accumulation, cited as the principal causes of the above mentioned diseases in recent studies, result in circulatory disturbance and blood vessel obstruction leading to ischemic cell death of heart, brain and peripheral vessels. Method: We investigated the biochemical changes in microvascular permeability, aggregation of platelet and the intravascular lipid accumulation in induced-diabetic rat using Streptozotocin. We also studied the effects of Woohwangcheongsirn-won after oral administration on blood circulation, platelet function and lipid metabolism. The results are as follows: I. Woohwangcheongsim-won increased blood circulation in microvessels. 2. Woohwangcheongsim-won increased the reduced erythrocyte deformability in diabetes. 3. Woohwangcheongsim-won induced the reduction of contents of 2, 3-DPG, but failed to affect the reduced contents of ATP in erythrocyte in diabetes. 4. Woohwangcheongsim-won reduced the activity of Ca/sup 2+/-ATPase in the membrane of erythrocyte. 5. Woohwangcheongsim-won reduced the platelet aggregation evoked by platelet agglutinin factor. 6. Woohwangcheongsim-won reduced the production of platelet-derived granules. 7. Woohwangcheongsim-won reduced the production of metabolites of arachidonic acid in diabetes, and also reduced the production of increased thromboxane B2. 8. Woohwangcheongsim-won reduced the synthesis of oxidized LDL-cholesterol. In conclusion, Woohwangcheongsim-won enhanced blood circulation in microvesseles, erythrocyte deformability and inhibited the increased platelet aggregation and the synthesis of oxidized LDL-cholesterol in diabetes. Therefore Woohwangcheongsim-won is believed to positively affect blood circulation (J Korean Oriental Med 2002;23(2):164-179)

  • PDF

A Study on the Metabolite Changes in Brain Diseases: 3 Teslar 1H Magnetic Resonance Spectroscopy (뇌질환 대사물질 변화의 고찰; 3 Teslar 수소 자기공명분광법)

  • Eun, Sungjong;Kim, Jeongjae;Yoo, Seungcheol
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.1
    • /
    • pp.35-42
    • /
    • 2014
  • The purpose of this study is to know the differences of metabolism in abnormal brain disease using a single-voxel proton MR spectroscopy(1H MRS) Together with five normal volunteers and each five patients with brain diseases, pathologically proved, underwent MRI and 1H MRS. The quantitative results of 1H MRS in adrenoleukodystrophy(ALD), hepatic encephalopathy(HE), and infarction gave unique information on the metabolite changes related with the white matter: the concentration of NAA decreased in all diseases; Cho, mI and Lac increased in ALD; Cho decreased in HE; and ${\beta}{\cdot}{\gamma}$-Glx and Lac increased in infarction. It is concluded that 1H MRS is capable of diagnosing brain diseases by monitoring metabolite changes in vivo that subsequently develope into abnormalities. 1H MRS may be a useful clinical tool for in both diagnosis and prognosis of brain diseases.

Quantitative Analysis of Brain Metabolite Spectrum Depending on the Concentration of the Contrast Media in Phantom (팬텀 내 조영제 농도에 따른 뇌 대사물질 Spectrum의 정량분석)

  • Shin, WoonJae;Gang, EunBo;Chun, SongI
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.1
    • /
    • pp.47-53
    • /
    • 2015
  • Quantitative analysis of MR spectrum depending on mole concentration of the contrast media in cereberal metabolite phantom was performed. PRESS pulse sequence was used to obtain MR spectrum at 3.0T MRI system (Archieva, Philips Healthcare, Best, Netherland), and the phantom contains brain metabolites such as N-Acetyl Asparatate (NAA), Choline (Cho), Creatine (Cr) and Lactate (Lac). In this study, optimization of MRS PRESS pulse sequency depending on the concentration of contrast media (0, 0.1 and $0.3mmol/{\ell}$) was evaluated for various repetition time(TR; 1500, 1700 and 2000 ms). In control (cotrast-media-free) group, NAA and Cho signals were the highest at TR 2000 ms than at 1700 and 1500 ms. Cr had the highest peak signal at TR 1500 ms. When concentration of contrast media was $0.1mmol/{\ell}$, the metabolites were increased NAA 73%, Cho 249%, Cr 37% at TR 1700 ms compared with other TR, and also signal increased at $0.3mmol/{\ell}$, In $0.5mmol/{\ell}$ of contrast agent, cerebral metabolite peaks reduced, especially when TR 1500 ms and 2000 ms they decreased below those of control group. The ratio of metabolite peaks such as NAA/Cr and Cho/Cr decreased as the concentration of the contrast agent increased from 0.1 to $0.5mmol/{\ell}$. Authors found that the optimization of PRESS sequence for 0.3T MRS was as follows: low density of contrast agent ($0.1mmol/{\ell}$ and $0.3mmol/{\ell}$) made the highest signal intensity, while high density of contrast agent reveals the least reduction of signal intensity at 1700 ms. In conclusion, authors believe that it is helpful to reduce TR for acquiring maximum signal intensity.