• Title/Summary/Keyword: ceramic composite

Search Result 1,358, Processing Time 0.025 seconds

A Making of Aesthetic Dental restorations with Nano Hybrid Ceramic material by CAD/CAM System (치과 CAD/CAM용 Nano Hybrid Ceranic 소재를 이용한 심미 치과보철물의 제작)

  • Choi, Beom-jin
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.25 no.2
    • /
    • pp.98-108
    • /
    • 2016
  • In recent days, perhaps the biggest driver in new material development is the desire to improve restorations esthetics compared to the traditional metal substructure based ceramics or all-ceramic restorations. Each material type performs differently regarding strength, toughness, effectiveness of machining and the final preparation of the material prior to placement. For example, glass ceramics are typically weaker materials which limits its use to single-unit restorations. On the other hand, zirconia has a high fracture toughness which enables multi-unit restorations. This material requires a long time sintering procedure which excludes its use for fast chair side production. Hybrid ceramic material developed for CAD/CAM system is contained improved nano ceramic elements. This new material, called a Resin Nano Hybrid Ceramic is unique in durability of function and aesthetic base compositions. The new nano-hybrid ceramic material is not a composite resin. It is also not a pure ceramic. The material is a mixture of both and consists of nano-ceramic fillers. Like a composite, the material is not brittle and is fracture resistant. Like a glass ceramic, the material has excellent polish retention for lasting esthetics. The material is easily machined by chair side or in a dental lab side, could be an useful restorative option.

Penetration Mechanisms of Ceramic Composite Armor Made of Alumina/GFRP

  • Jung, Woo-Kyun;Lee, Hee-Sub;Jung, Jae-Won;Ahn, Sung-Hoon;Lee, Woo-Il;Kim, Hee-Jae;Kwon, Jeong-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.4
    • /
    • pp.38-44
    • /
    • 2007
  • Combat vehicles are frequently maneuvered in battlefields when the lives of combatants are being threatened. These vehicles are important elements that influence the consequences of a battle. Their armor must be lightweight and provide excellent protection to ensure successful operations. Ceramic composite armor has recently been developed by many countries to fulfill these requirements. We reviewed previous research to determine an effective armor design, and then fabricated a composite armor structure using $Al_2O_3$ and glass fiber-reinforced polymer. Specimens were manufactured under controlled conditions using different backing plate thicknesses and bonding methods for the ceramic layer and the backing plate. The penetration of an armor-piercing bullet was evaluated from ballistic protection tests. The bonding method between the ceramic layer and the fiber-reinforced polymer influenced the ballistic protection performance. A bonding layer using rubber provided the best protection.

Preparation and Characterization of a Layered Organic-inorganic Composite by the Electrophoretic Deposition of Plate-shaped Al2O3 Particles and Electrophoretic Resin (전기영동적층법을 통한 판상 알루미나 입자와 전기영동 수지의 배향 유무기 복합체 제조 및 물성평가)

  • Park, Hee Jeong;Lim, Hyung Mi;Choi, Sung-Churl;Kim, Younghee
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.460-465
    • /
    • 2013
  • Plate-shaped inorganic particles are coated onto a stainless steel substrate by the electrophoretic deposition of a precursor slurry which includes the inorganic particles of $Al_2O_3$ and polymer resin in mixed solvents to mimic the abalone shell structure, which is a composite of plate-shaped inorganic particles and organic interlayer binding materials with a layered orientation. The process parameters of the electrophoretic deposition include the voltage, coating time, and conductivity of the substrate. In addition, the suspension parameters are the particle size, concentration, viscosity, conductivity, and stability. We prepared an organic-inorganic composite coating with a high inorganic solid content by arraying the plate-shaped $Al_2O_3$ particles and electrophoretic resin via an electrophoretic deposition method. We analyzed the effect of the slurry composition and the electrophoretic deposition process parameters on the physical, mechanical and thermal properties of the coating layer, i.e., the thickness, density, particle orientation, Young's modulus and thermogravimetric analysis results.

A Study on Composite Electroless Nikel Plating with Ceramic Dispersive (비금속 분체를 이용한 무전해 니켈 복합도금에 관한 연구)

  • 김용규;박수훈
    • Journal of the Korean institute of surface engineering
    • /
    • v.22 no.1
    • /
    • pp.43-51
    • /
    • 1989
  • The characteristion of composite electroless Nikel palting on the condition of adding 3kinds ceramic dispersives, Al2O3, Si3O4 and artificial diamond powder were studied. Decreasing solution temperature for composite plating was required to depress the spontaneous decomposition caused by dispersive including enlargement of reaction surface. The rate of composite plating was faster than that of general electroless-Nickel plating without dispersive. this increasing tendency of plating rate was remarkable for the active catalysis, like diamond powder.

  • PDF

Electrical Conductivity of Carbon Fiber-Polymer Composite (Carbon 화이버-폴리머 복합체의 전기적 특성)

  • 이재연;최경만
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.6
    • /
    • pp.603-609
    • /
    • 1998
  • The composites of insulating polymer filled with conducting carbon-fiber were fabricated by molding press method. To understand the fiber aspect-ratio dependence of electrical conductivity the aspect ratio was varied from 4 to 10 The percolation thresholds of transition from the insulator to the conductor de-creased as the fiber aspect ratio increased. The percolation threshold of fiber-segregated composite in this study was smaller than that of fiber-random composite shown in other study. When the electrical con-ductivity curves were fitted by general effective medium equation morphological variable(t) decreased as the fiber aspect-ratio increased.

  • PDF

Thickness Dependence of CVD-SiC-Based Composite Ceramic for the Mold of the Curved Cover Glass (곡면 커버 글라스용 금형 코팅을 위한 CVD-SiC 기반 세라믹 복합체의 두께에 따른 특성 연구)

  • Kim, Kyoung-Ho;Jeong, Seong-Min;Lee, Myung-Hyun;Bae, Si-Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.6
    • /
    • pp.310-315
    • /
    • 2019
  • The use of a silicon carbide (SiC)-based composite ceramic layer for the mold of a curved cover glass was demonstrated. The stress of SiC/VDR/graphite-based mold structure was evaluated via finite element analysis. The results revealed that the maximum tensile stress primarly occured at the edge region. Moreover, the stress can be reduced by employing a relatively thick SiC coating layer and, therefore, layers of various thicknesses were deposited by means of chemical vapor deposition. During growth of the layer, the orientation of the facets comprising the SiC grain became dominant with additional intense SiC(220) and SiC(004). However, the roughness of the SiC layer increased with increasing thickness of the layer and. Hence, the thickness of the SiC layer needs to be adjusted by values lower than the tolerance band of the curved cover glass mold.

Flexible poly(vinyl alcohol)-ceramic composite separators for supercapacitor applications

  • Bon, Chris Yeajoon;Mohammed, Latifatu;Kim, Sangjun;Manasi, Mwemezi;Isheunesu, Phiri;Lee, Kwang Se;Ko, Jang Myoun
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.173-179
    • /
    • 2018
  • Electrochemical characterization was conducted on poly(vinyl alcohol) (PVA)-ceramic composite (PVA-CC) separators for supercapacitor applications. The PVA-CC separators were fabricated by mixing various ceramic particles including aluminum oxide ($Al_2O_3$), silicon dioxide ($SiO_2$), and titanium dioxide ($TiO_2$) into a PVA aqueous solution. These ceramic particles help to create amorphous regions in the crystalline structure of the polymer matrix to increase the ionic conductivity of PVA. Supercapacitors were assembled using PVA-CC separators with symmetric activated carbon electrodes and electrochemical characterization showed enhanced specific capacitance, rate capability, cycle life, and ionic conductivity. Supercapacitors using the $PVA-TiO_2$ composite separator showed particularly good electrochemical performance with a 14.4% specific capacitance increase over supercapacitors using the bare PVA separator after 1000 cycles. With regards to safety, PVA becomes plasticized when immersed in 6 M KOH aqueous solution, thus there was no appreciable loss in tear resistance when the ceramic particles were added to PVA. Thus, the enhanced electrochemical properties can be attained without reduction in safety making the addition of ceramic nanoparticles to PVA separators a cost-effective strategy for increasing the ionic conductivity of separator materials for supercapacitor applications.

Mechanical strength analysis for functionally graded composite plates (경사기능 복합재료 판의 기계적 강도해석)

  • Na, Kyung-Su;Kim, Ji-Hwan
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.66-69
    • /
    • 2005
  • Mechanical strength of functionally graded composite plates that composed of ceramic, functionally graded material and metal layers is investigated using 3-D finite element method. In FGM layer, material properties are assumed to be varied continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of a ceramic and metal. The 3-D finite element model is adopted by using an IS-node solid element to analyze more accurately the variation of material properties in the thickness direction. Numerical results are compared with those of the previous works. In addition, the displacements, the tensile stresses and the compressive stresses are analyzed for the variation of FGM thickness ratio and volume fraction distribution.Mechanical strength of functionally graded composite plates that composed of ceramic, functionally graded material and metal layers is investigated using 3-D finite element method. In FGM layer, material properties are assumed to be varied continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of a ceramic and metal. The 3-D finite element model is adopted by using an IS-node solid element to analyze more accurately the variation of material properties in the thickness direction. Numerical results are compared with those of the previous works. In addition, the displacements, the tensile stresses and the compressive stresses are analyzed for the variation of FGM thickness ratio and volume fraction distribution.

  • PDF

Preparation of Organic/Inorganic Siloxane Composite Membranes and Concentration of n-butanol from ABE Solution by Pervaporation (Siloxane 유-무기 복합막 제조와 투과증발법을 이용한 Acetone-Butanol-Ethanol (ABE) 용액에서 부탄올의 분리)

  • Jee, Ki Yong;Lee, Yong Taek
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.580-586
    • /
    • 2013
  • In this paper, polymer composite membranes and ceramic composite membranes were prepared in order to compare differences in pervaporation performances relative to the support layers. PVDF was used for the polymer support layers, and $a-Al_2O_3$ was used for the ceramic support layers. For active layer was coated for PDMS, which is a rubbery polymer. The characterization of membranes were analysed by SEM, contact angle, and XPS. We studied performances relative to the composite membrane support layers in the ABE mixture solutions. The results of the pervaporation, the flux of the ceramic composite membrane was shown to be $250.87g/m^2h$, which was higher than that of polymer composite membranes, at $195.64g/m^2h$. However, it was determined that the separation factor of the polymer composite membranes was 31.98 which were higher than that of the ceramic composite membranes, at 20.66.

Analysis of a Plate-type Piezoelectric Composite Unimorph Actuator Considering Thermal Residual Deformation (잔류 열 변형을 고려한 평판형 압전 복합재료 유니모프 작동기의 해석)

  • Goo Nam-Seo;Woo Sung-Choong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.4 s.247
    • /
    • pp.409-419
    • /
    • 2006
  • The actuating performance of plate-type unimorph piezoelectric composite actuators having various stacking sequences was evaluated by three dimensional finite element analysis on the basis of thermal analogy model. Thermal residual stress distribution at each layer in an asymmetrically laminated plate with PZT ceramic layer and thermally induced dome height were predicted using classical laminated plate theory. Thermal analogy model was applied to a bimorph cantilever beam and LIPCA-C2 actuator in order to confirm its validity. Finite element analysis considering thermal residual deformation showed that the bending behavior of piezoelectric composite actuator subjected to electric loads was significantly different according to the stacking sequence, thickness of constituent PZT ceramic and boundary conditions. In particular, the increase of thickness of PZT ceramic led to the increase of the bending stiffness of piezoelectric composite actuator but it did not always lead to the decrease of actuation distance according to the stacking sequences of piezoelectric composite actuator. Therefore, it is noted that the actuating performance of unimorph piezoelectric composite actuator is rather affected by bending stiffness than actuation distance.