DOI QR코드

DOI QR Code

Preparation of Organic/Inorganic Siloxane Composite Membranes and Concentration of n-butanol from ABE Solution by Pervaporation

Siloxane 유-무기 복합막 제조와 투과증발법을 이용한 Acetone-Butanol-Ethanol (ABE) 용액에서 부탄올의 분리

  • Jee, Ki Yong (Department of Chemical Engineering, College of Engineering, Kyung Hee University) ;
  • Lee, Yong Taek (Department of Chemical Engineering, College of Engineering, Kyung Hee University)
  • Received : 2013.06.07
  • Accepted : 2013.07.05
  • Published : 2013.10.01

Abstract

In this paper, polymer composite membranes and ceramic composite membranes were prepared in order to compare differences in pervaporation performances relative to the support layers. PVDF was used for the polymer support layers, and $a-Al_2O_3$ was used for the ceramic support layers. For active layer was coated for PDMS, which is a rubbery polymer. The characterization of membranes were analysed by SEM, contact angle, and XPS. We studied performances relative to the composite membrane support layers in the ABE mixture solutions. The results of the pervaporation, the flux of the ceramic composite membrane was shown to be $250.87g/m^2h$, which was higher than that of polymer composite membranes, at $195.64g/m^2h$. However, it was determined that the separation factor of the polymer composite membranes was 31.98 which were higher than that of the ceramic composite membranes, at 20.66.

본 연구에서는 투과증발 공정에서 지지체에 따른 투과특성의 차이를 알아보기 위해 고분자 지지체 복합막과 세라믹 지지체 복합막을 제조하였다. 고분자 지지체로는 polyvinylidene fluoride (PVDF)를 사용하였으며 세라믹 지지체로는 $a-Al_2O_3$ 를 사용하였다. 활성층으로는 각각의 지지체에 고무상 고분자인 polydimethoxysilane (PDMS)를 코팅하였다. 제조한 복합막의 구조와 특성을 살펴보기 위해 SEM, contact angle, XPS로 분석하였으며, 이를 투과증발 공정에 적용하여 다성분계의 혼합용액에서 복합막의 지지체에 따른 투과 특성을 알아보았다. 투과 증발 실험 결과 세라믹 지지체 복합막의 투과 플럭스는 $250.87g/m^2h$로 고분자 지지체 복합막의 $159.64g/m^2h$ 보다 높은 투과 플럭스를 나타내었다. 그러나 선택도의 경우 고분자 지지체 복합막이 31.98로 20.66인 세라믹 지지체 복합막보다 더 높게 나타나는 것을 확인하였다.

Keywords

References

  1. Qureshi, N., Saha, B. C. and Dien, B., "Production of Butanol (a biofuel) from Agricultural Residues: Part I - Use of Barley Straw Hydrolysate," Biomass Bioenerg., 34, 559-65(2010). https://doi.org/10.1016/j.biombioe.2009.12.024
  2. Huang, J. and Meagher, M. M., "Pervaporative Recovery of n-Butanol from Aqueous Solutions and ABE Fermentation Broth Using Thin-film Silicalite-filled Silicone Composite Membranes,"J. Membr. Sci., 192, 231(2001). https://doi.org/10.1016/S0376-7388(01)00507-5
  3. Baudot, A. and Marin, M., "Pervaporation of Aroma Compounds: Comparison of Membrane Performances with Vapour-liquid Equilibria and Engineering Aspects of Process Improvement," Food and Bioproducts Processing, 75, 117-142(1997). https://doi.org/10.1205/096030897531432
  4. Trifunovic, O. and Tragardh, G., "The Influence of Support Layer on Mass Transport of Homologous Series of Alcohols and Esters Through Composite Pervaporation Membranes," J. Membr. Sci., 259, 122(2005). https://doi.org/10.1016/j.memsci.2005.03.011
  5. Zhu, Y., Xia, S., Liu, G. and Jin, W., "Preparation of Ceramicsupported Poly(vinyl alcohol)-chitosan Composite Membranes and Their Applications in Pervaporation Dehydration of Organic/water Mixtures," J. Membr. Sci., 349, 341-348(2010). https://doi.org/10.1016/j.memsci.2009.11.065
  6. Verkerk, A. W., Van, M. P., Vorstman, M. A. G. and Keurentjes, J. T. F., "Properties of High Flux Ceramic Pervaporation Membranes for Dehydration of Alcohol/water Mixtures," Sep. Purif. Technol., 22-23, 689-695(2001). https://doi.org/10.1016/S1383-5866(00)00185-4
  7. Fouad, E. A. and Feng, X., "Use of Pervaporation to Separate Butanol from Dilute Aqueous Solutions: Effects of Operating Conditions and Concentration Polarization," J. Membr. Sci., 323, 428-435(2008). https://doi.org/10.1016/j.memsci.2008.06.054
  8. Hong, Y. K. and Hong, W. H., "Influence of Ceramic Support on Pervaporation Characteristics of IPA/Water Mixtures Using PDMS/Ceramic Composite Membrane," J. Membr. Sci., 159, 29 (1990).
  9. Kim, H. J., Song, Y. S. and Min, B. R., "The Study on the Recovery of Volatilc Organic Coomponents by Pervaporation," Membrane J., 9(1), 51(1999).
  10. Blume, I., Wijmans, J. G. and Baker, R. W., "The Separation of Dissolved Organics from Water by Pervaporation," J. Membr. Sci., 49, 253(1990). https://doi.org/10.1016/S0376-7388(00)80643-2
  11. Uragami, T., Doi, T. and Miyata, T., "Control of Permselectivity with Surface Modifications of Poly[1-(trimethylsilyl)-1-propyne] Membranes," Int. J. Adhes. Adhes., 19, 405(1999). https://doi.org/10.1016/S0143-7496(98)00064-5
  12. Smitha, B., Suhanya, D., Sridhar, S. and Ramakrishna, M., "Separation of Organic-organic Mixtures by Pervaporation: a Review," J. Membr. Sci., 241, 1(2004). https://doi.org/10.1016/j.memsci.2004.03.042
  13. Lipnizki, F., Olsson, J., Wu, P., Weis, A., Tragardh, G. and Field, R. W., "Hydrophobic Pervaporation: Influence of the Support Layer of Composite Membrane of the Mass Transfer," Sep. Sci. Technol., 37, 1474(2002).
  14. Choi, G. Y., Han, H. H. and Lee, Y. T., "Preparation of Nanoporous Ceramic Membranes by Sol-gel Method and Characterization of Gas Permeation," Membrane J., 18(2), 176(2008).
  15. Lee, K. H., Sea, B. and Lee, D. W., "Microstructure and Pore Size Control of Silica Membrane for Gas Separation at Elevated Temperatures," Membrane J., 7, 42(2005).
  16. Wheeler, D. R. and Pepper, S. V., "Angle-resolved X-ray Photoelectron Spectroscopy of Epitaxially Grow (100) $\beta$-SiC to $1300^{\circ}C$," Surf. Interface Anal., 10, 153(1987). https://doi.org/10.1002/sia.740100216
  17. James, E., "Physical Properties of Polymers Handbook," Springer (2007).
  18. Kong, J. and Li, K., "Oil Removal from Oil-in-water Emulsions Using PVDF Membranes," Sep. Purif. Technol., 16, 1 (1999). https://doi.org/10.1016/S1383-5866(98)00049-5
  19. Kong, C. I., Cho, M. H. and Lee, Y. T., "Pervaporation of Buthanol from Their Aqueous Solution Using a PDMS-Zeolite Composite Membrane," Korean Chem, eng. Res.(HWAHAK KONGHAK), 49(6), 816(2011). https://doi.org/10.9713/kcer.2011.49.6.816
  20. Durre, P., "Biobutanol: An Attractive Biofuel," Bio-technology Journal, 2, 1525(2007).
  21. Barton, A. F. M., "CRC Handbook of Solubility Parameter and Other Cohesion Parameter," CRC press Inc., Ch. 7, p110, London(1983).

Cited by

  1. Tubular Membranes Using Surface Modified Supports vol.52, pp.2, 2014, https://doi.org/10.9713/kcer.2014.52.2.214