Penetration Mechanisms of Ceramic Composite Armor Made of Alumina/GFRP

  • Jung, Woo-Kyun (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Lee, Hee-Sub (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Jung, Jae-Won (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Ahn, Sung-Hoon (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Lee, Woo-Il (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Kim, Hee-Jae (Department of Weapons Engineering, Korea Military Academy) ;
  • Kwon, Jeong-Won (Rotem Company)
  • Published : 2007.10.01

Abstract

Combat vehicles are frequently maneuvered in battlefields when the lives of combatants are being threatened. These vehicles are important elements that influence the consequences of a battle. Their armor must be lightweight and provide excellent protection to ensure successful operations. Ceramic composite armor has recently been developed by many countries to fulfill these requirements. We reviewed previous research to determine an effective armor design, and then fabricated a composite armor structure using $Al_2O_3$ and glass fiber-reinforced polymer. Specimens were manufactured under controlled conditions using different backing plate thicknesses and bonding methods for the ceramic layer and the backing plate. The penetration of an armor-piercing bullet was evaluated from ballistic protection tests. The bonding method between the ceramic layer and the fiber-reinforced polymer influenced the ballistic protection performance. A bonding layer using rubber provided the best protection.

Keywords

References

  1. Kim, H. J., 'Ballistic Protection Engineering,' Cheong Moon Gak Publishing, pp. 55-62, 2004
  2. Lee, H. J., 'Rifles and Ballistics,' Cheong Moon Gak Publishing, pp. 311-356, 1998
  3. Korea Military Academy, 'Weapon Engineering,' Cheong Moon Gak Publishing, pp. 48-51, 1992
  4. Sadanandan, S. and Hetherington, J. G., 'Characterization of Ceramic/Steel Ceramic/Aluminum Armors Subjected to Oblique Impact,' International Journal of Impact Engineering, Vol. 19, No. 9, pp. 811-819, 1997 https://doi.org/10.1016/S0734-743X(97)00019-5
  5. Benloulo, I. S. C. and Sanchezgalvez, V., 'A New Analytical Model to Simulate Impact onto Ceramic/Composite Armors,' International Journal of Impact Engineering, Vol. 21, No. 6, pp. 461-471, 1998 https://doi.org/10.1016/S0734-743X(98)00006-2
  6. Mahfuz, H., Zhu, Y., Haque, A., Abutalib, A., Vaidya, U., Jeelani, S., Gama, B., Gillespie, J. and Fink, B., 'Investigation of High- Velocity Impact on Integral Armor Using Finite Element Method,' International Journal of Impact Engineering, Vol. 24, No. 2, pp. 203-217, 2000 https://doi.org/10.1016/S0734-743X(99)00047-0
  7. Jovicic, J., 'Modeling of the Ballistic Behavior of Gradient Design Composite Armor,' Composites: Part A, Vol. 31, No. 8, pp. 773-784, 2000 https://doi.org/10.1016/S1359-835X(00)00028-2
  8. Mines, R. A. W., 'A One-Dimensional Stress Wave Analysis of a Lightweight Composite Armor,' Composite Structures, Vol. 64, No. 1, pp. 55-62, 2004 https://doi.org/10.1016/S0263-8223(03)00213-7
  9. Chou, S. C., 'Ballistic Impact Damage of S2 Glass Reinforced Plastic Structural Armors,' Composites Science and Technology, Vol. 58, No. 9, pp. 1453-1461, 1998 https://doi.org/10.1016/S0266-3538(98)00029-3
  10. Gama, B. A., 'Aluminum Foam Integral Armor: A New Dimension in Armor Design,' Composite Structures, Vol. 52, No. 3, pp. 381-395, 2001 https://doi.org/10.1016/S0263-8223(01)00029-0
  11. Fawaz, Z., Zheng, W. and Behdinan, K., 'Numerical Simulation of Normal and Oblique Ballistic Impact on Ceramic Composite Armors,' Composite Structures, Vol. 63, No. 3, pp. 387-395, 2004 https://doi.org/10.1016/S0263-8223(03)00187-9
  12. Anderson, C. E. and Walker, J. D., 'An Analytical Model for Dwell and Interface Defeat,' International Journal of Impact Engineering, Vol. 31, No. 9, pp. 1119-1132, 2005 https://doi.org/10.1016/j.ijimpeng.2004.07.013
  13. Shin, H. S., Oh, S. Y., Kim, D. K., Kim, C. W. and Chang, S. N., 'Investigation on Fracture Behavior of Armor Ceramics against HEAT Penetration,' International Journal of Impact Engineering, Vol. 23, pp. 631-638, 2003
  14. Rosenberg, Z. and Dekel, E., 'On the Role of Material Properties in the Terminal Ballistics of Long Rods,' International Journal of Impact Engineering, Vol. 30, No. 7, pp. 835-851, 2004 https://doi.org/10.1016/j.ijimpeng.2004.03.007
  15. Rosset, W. S., 'Patterned Armor Performance Evaluation,' International Journal of Impact Engineering, Vol. 31, No. 10, pp. 1223-1234, 2005 https://doi.org/10.1016/j.ijimpeng.2004.07.009
  16. Rosenberg, Z., Dekel, E., Hohler, V., Stilp, A. J. and Weber, K., 'Hypervelocity Penetration of Tungsten Alloy Rods into Ceramic Tiles: Experiments and 2-D Simulations,' International Journal of Impact Engineering, Vol. 20, No. 6, pp. 675-683, 1997 https://doi.org/10.1016/S0734-743X(97)87454-4
  17. Grace, F. I. and Rupert, N. L., 'Analysis of Long Rods Impacting Ceramic Targets at High Velocity,' International Journal of Impact Engineering, Vol. 20, No. 1, pp. 281-292, 1997 https://doi.org/10.1016/S0734-743X(97)87501-X
  18. Sharma, M. M. and Amateau, M. F., 'Processing of Laminated Hybrid Ceramic Composites,' Composites: Part B, Vol. 29, No. 2, pp. 189-194, 1998 https://doi.org/10.1016/S1359-8368(97)00009-7
  19. Lundberg, P., Renstrom, R. and Lundberg, B., 'Impact of Metallic Projectiles on Ceramic Targets: Transition between Interface Defeat and Penetration,' International Journal of Impact Engineering, Vol. 24, No. 3, pp. 259-275, 2000 https://doi.org/10.1016/S0734-743X(99)00152-9
  20. Weber, K., Holmquist, T. J. and Templeton, D. W., 'The Response of Layered Aluminum Nitride Targets Subjected to Hypervelocity Impact,' International Journal of Impact Engineering, Vol. 26, No. 1, pp. 831-841, 2001 https://doi.org/10.1016/S0734-743X(01)00136-1
  21. Hubert, W., Meyer, J. and Kleponis, D. S., 'Modeling the High Strain Rate Behavior of Titanium Undergoing Ballistic Impact and Penetration,' International Journal of Impact Engineering, Vol. 26, No.1, pp. 509-521, 2001 https://doi.org/10.1016/S0734-743X(01)00107-5
  22. Simha, C. H. M., Blessa, S. J. and Bedford, A., 'Computational Modeling of the Penetration Response of a High-Purity Ceramic,' International Journal of Impact Engineering, Vol. 27, No. 1, pp. 65-86, 2002 https://doi.org/10.1016/S0734-743X(01)00036-7
  23. Bao, Y., Su, S., Yang, J. and Fan, Q., 'Prestressed Ceramics and Improvement of Impact Resistance,' Materials Letters, Vol. 57, No. 2, pp. 518-524, 2002 https://doi.org/10.1016/S0167-577X(02)00822-4
  24. Arias, A., Zaera, R., Puente, J. L. and Navarro, C., 'Numerical Modeling of the Impact Behavior of New Particulate-Loaded Composite Materials,' Composite Structures, Vol. 61, No. 1, pp. 151-159, 2003 https://doi.org/10.1016/S0263-8223(03)00038-2
  25. Forquin, P., Denoual, C., Cottenot, C. E. and Kild, F., 'Experiments and Modelling of the Compressive Behavior of Two SiC Ceramics,' Mechanics of Materials, Vol. 35, No. 10, pp. 987-1002, 2003 https://doi.org/10.1016/S0167-6636(02)00321-6
  26. Zhang, G. J., Ando, M., Yang, J. F., Ohji, T. and Kanzaki, S., 'Boron Carbide and Nitride as Reactants for In Situ Synthesis of Boride-Containing Ceramic Composites,' Journal of the European Ceramic Society, Vol. 24, pp. 171-178, 2004 https://doi.org/10.1016/S0955-2219(03)00607-1
  27. Goncalves, D. P., Melo, F. C. L., Klein, A. N. and Qureshi, H. A., 'Analysis and Investigation of Ballistic Impact on Ceramic/Metal Composite Armor,' International Journal of Machine Tools & Manufacture, Vol. 44, No. 2, pp. 307-316, 2004 https://doi.org/10.1016/j.ijmachtools.2003.09.005
  28. Yu, R. C., Ruiz, G. and Pandolfi, A., 'Numerical Investigation on the Dynamic Behavior of Advanced Ceramics,' Engineering Fracture Mechanics, Vol. 71, No. 4, pp. 897-911, 2004 https://doi.org/10.1016/S0013-7944(03)00016-X
  29. Holmquist, T. J. and Johnson, G. R., 'Modeling Prestressed Ceramic and its Effect on Ballistic Performance,' International Journal of Impact Engineering, Vol. 31, No. 2, pp. 113-127, 2005 https://doi.org/10.1016/j.ijimpeng.2003.11.002
  30. Lundberg, P. and Lundberg, B., 'Transition between Interface Defeat and Penetration for Tungsten Projectiles and Four Silicon Carbide Materials,' International Journal of Impact Engineering, Vol. 31, No. 7, pp. 781-792, 2005 https://doi.org/10.1016/j.ijimpeng.2004.06.003
  31. Wang, B., 'The Behavior of Laminated Composite Plates as Armor,' Materials Processing Technology, Vol. 68, No. 3, pp. 279-287, 1997 https://doi.org/10.1016/S0924-0136(96)02541-1
  32. Nandlall, D., 'Numerical Simulation of the Ballistic Response of GRP Plate,' Composites Science and Technology, Vol. 58, No. 9, pp. 1463-1469, 1998 https://doi.org/10.1016/S0266-3538(98)00030-X
  33. Yoon, H. I., Choi, C. S. and Son, I. S., 'Influence of Moving Mass on Dynamic Behavior of Simply Supported Timoshenko Beam with Crack,' International Journal of Precision Engineering and Manufacturing, Vol. 7, No. 1, pp. 24-29, 2006
  34. Huang, X. G., Gillespie, J. W. J., Kumar, V. and Gavin, L., 'Mechanics of Integral Armor: Discontinuous Ceramic-Cored Sandwich Structure under Tension and Shear,' Composite Structures, Vol. 36, No. 1, pp. 81-90, 1996 https://doi.org/10.1016/S0263-8223(96)00068-2
  35. Fellows, N. A. and Barton, P. C., 'Development of Impact Model for Ceramic-Faced Semi-infinite Armour,' International Journal of Impact Engineering, Vol. 22, No. 8, pp. 793-811, 1999 https://doi.org/10.1016/S0734-743X(99)00017-2
  36. Lee, M. and Yoo, Y. H., 'Analysis of Ceramic/Metal Armor Systems,' International Journal of Impact Engineering, Vol. 25, No. 9, pp. 819-829, 2001 https://doi.org/10.1016/S0734-743X(01)00025-2
  37. Lynch, N. J., Bless, S. J., Brissenden, C., Berry, D. and Pedersen, B., 'Novel Penetrator Performance Against a Steel-Ceramic-Steel Target at 0 over the Velocity Range 1800 to 2900 m/s,' International Journal of Impact Engineering, Vol. 26, No. 1, pp. 475-486, 2001 https://doi.org/10.1016/S0734-743X(01)00099-9
  38. Holmquist, T., Templeton, D. W. and Bishnoi, K. D., 'Constitutive Modeling of Aluminum Nitride for Large Strain, High-Strain Rate, and High-Pressure Applications,' International Journal of Impact Engineering, Vol. 25, No. 3, pp. 211-231, 2001 https://doi.org/10.1016/S0734-743X(00)00046-4
  39. Dokko, W. and Kim, M. S., 'Analysis of Elasto-Plastic Dynamic Behavior of Plates Subjected to Low Velocity Impact,' International Journal of Precision Engineering and Manufacturing, Vol. 6, No. 1, pp. 36-42, 2005
  40. Hohler, V., Weber, K., Tham, R., James, B., Barker, A. and Pickup, I., 'Comparative Analysis of Oblique Impact on Ceramic Composite Systems,' International Journal of Impact Engineering, Vol. 26, No. 1, pp. 333-344, 2001 https://doi.org/10.1016/S0734-743X(01)00102-6
  41. Fritz, L., 'Carbon, Polyethylene and PBO Hybrid Fiber Composites for Structural Lightweight Armor,' Composites: Part A, Vol. 33, No. 2, pp. 211-231, 2002
  42. Song, S. H., Ahn, I. H. and Lee, J. M., 'Behavioral Characteristics of Fatigue Cracks in Small Hole Defects Located on Opposite Sides of the Shaft Cross Section,' International Journal of Precision Engineering and Manufacturing, Vol. 5, No. 4, pp. 36-42, 2004
  43. Yadav, S. and Ravichandran, G., 'Penetration Resistance of Laminated Ceramic/Polymer Structures,' International Journal of Impact Engineering, Vol. 28, No. 5, pp. 557-574, 2003 https://doi.org/10.1016/S0734-743X(02)00122-7
  44. Chin, E. S. C., 'Army Focused Research Team on Functionally Graded Armor Composites,' Materials Science and Engineering A, Vol. 259, No. 2, pp. 155-161, 1999 https://doi.org/10.1016/S0921-5093(98)00883-1
  45. Bendor, G., Dubinsky, A., Elperin, T. and Frage, N., 'Optimization of Two Component Ceramic Armor for a Given Impact Velocity,' Theoretical and Applied Fracture Mechanics, Vol. 33, No. 3, pp. 185-190, 2000 https://doi.org/10.1016/S0167-8442(00)00013-6
  46. Wang, Z. and Nakamura, T., 'Simulations of Crack Propagation in Elastic Plastic Graded Materials,' Mechanics of Materials, Vol. 36, No. 7, pp. 601-622, 2004 https://doi.org/10.1016/S0167-6636(03)00079-6
  47. Jin, Z. H. and Dodds, R. H., 'Crack Growth Resistance Behavior of a Functionally Graded Material: Computational Studies,' Engineering Fracture Mechanics, Vol. 71, No. 12, pp. 1651-1672, 2004 https://doi.org/10.1016/j.engfracmech.2003.08.002
  48. Hall, I. W. and Den, M., 'High Strain Rate Behavior of a SiC Particulate Reinforced Alumina Ceramic Matrix Composite,' Scripta Materialia, Vol. 38, No. 4, pp. 667-674, 1998 https://doi.org/10.1016/S1359-6462(97)00511-3
  49. Pallone, A., Demaree, J. and Adams, J., 'Application of Nondestructive Ion Beam Analysis to Measure Variations in the Elemental Composition of Armor Materials,' Nuclear Instruments and Methods in Physics Research: Part B, Vol. 219, pp. 755-758, 2004 https://doi.org/10.1016/j.nimb.2004.01.157
  50. Mahdi, S., Gamaa, B. A., Yarlagadda, S. and Gillespie, J. W., 'Effect of the Manufacturing Process on the Interfacial Properties and Structural Performance of Multi-functional Composite Structures,' Composites: Part A, Vol. 34, No. 7, pp. 635-647, 2003 https://doi.org/10.1016/S1359-835X(03)00091-5