• Title/Summary/Keyword: central limit theorem

Search Result 159, Processing Time 0.025 seconds

On the Functional Central Limit Theorem of Negatively Associated Processes

  • Baek Jong Il;Park Sung Tae;Lee Gil Hwan
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.1
    • /
    • pp.117-123
    • /
    • 2005
  • A functional central limit theorem is obtained for a stationary linear process of the form $X_{t}= \sum\limits_{j=0}^\infty{a_{j}x_{t-j}}$, where {x_t} is a strictly stationary sequence of negatively associated random variables with suitable conditions and {a_j} is a sequence of real numbers with $\sum\limits_{j=0}^\infty|a_{j}|<\infty$.

A FUNCTIONAL CENTRAL LIMIT THEOREM FOR LINEAR RANDOM FIELD GENERATED BY NEGATIVELY ASSOCIATED RANDOM FIELD

  • Ryu, Dae-Hee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.507-517
    • /
    • 2009
  • We prove a functional central limit theorem for a linear random field generated by negatively associated multi-dimensional random variables. Under finite second moment condition we extend the result in Kim, Ko and Choi[Kim,T.S, Ko,M.H and Choi, Y.K.,2008. The invariance principle for linear multi-parameter stochastic processes generated by associated fields. Statist. Probab. Lett. 78, 3298-3303] to the negatively associated case.

  • PDF

A Study of the Teaching Method for Statistics Education with Experiment (실험을 통한 통계교육의 수업방법 연구)

  • 김응환
    • The Mathematical Education
    • /
    • v.40 no.2
    • /
    • pp.345-350
    • /
    • 2001
  • This study suggested a teaching method to improve intuitive understanding of the statistical basic concepts about the central limit theorem with experiment. It is very hard to understand about the concept of the central limit theorem in the school mathematics class. The result of this study experiment for the class of statistics education shows that the students and mathematics teachers were interesting at this experiment. They corrected their misunderstanding about the central limit theorem by discussion for the result of experiment with team members. I think that this study can help teachers to teach the students using the experiment method.

  • PDF

A functional central limit theorem for positively dependent random fields

  • Tae Sung Kim;Eun Yang Seok
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.1
    • /
    • pp.265-272
    • /
    • 1996
  • In this note we prove a functional central limit theorem for linearly positive quadrant dependent(LPQD) random fields, satisfying some assumption on covariances and the moment condition $\sup_{n \in \Zeta^d} E$\mid$S_n$\mid$^{2+\rho} < \infty$ for some $\rho > 0$. We also apply this notion to random measures.

  • PDF

A CENTRAL LIMIT THEOREM FOR GENERAL WEIGHTED SUM OF LNQD RANDOM VARIABLES AND ITS APPLICATION

  • KIM, HYUN-CHULL;KIM, TAE-SUNG
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.531-538
    • /
    • 2005
  • In this paper we derive the central limit theorem for ${\sum}_{i=1}^n\;a_{ni}\xi_i$, where ${a_{ni},\;1\;{\leq}\;i\;{\leq}\;n}$ is a triangular array of nonnegative numbers such that $sup_n{\sum}_{i=1}^n\;a_{ni}^2\;<\;{\infty},\;max_{1{\leq}i{\leq}n}a_{ni}{\rightarrow}0\;as\;n\;{\rightarrow}\;{\infty}\;and\;\xi'_i\;s$ are a linearly negative quadrant dependent sequence. We also apply this result to consider a central limit theorem for a partial sum of a generalized linear process $X_n\;=\;\sum_{j=-\infty}^\infty\;a_k+_j{\xi}_j$.

CENTRAL LIMIT THEOREM ON CHEBYSHEV POLYNOMIALS

  • Ahn, Young-Ho
    • The Pure and Applied Mathematics
    • /
    • v.21 no.4
    • /
    • pp.271-279
    • /
    • 2014
  • Let $T_l$ be a transformation on the interval [-1, 1] defined by Chebyshev polynomial of degree $l(l{\geq}2)$, i.e., $T_l(cos{\theta})=cos(l{\theta})$. In this paper, we consider $T_l$ as a measure preserving transformation on [-1, 1] with an invariant measure $\frac{1}{\sqrt[\pi]{1-x^2}}dx$. We show that If f(x) is a nonconstant step function with finite k-discontinuity points with k < l-1, then it satisfies the Central Limit Theorem. We also give an explicit method how to check whether it satisfies the Central Limit Theorem or not in the cases of general step functions with finite discontinuity points.

A CENTRAL LIMIT THEOREM FOR LINEAR PROCESSES UNDER LINEAR NEGATIVELY QUADRANT DEPENDENCE

  • Kim, Hyun-Chull
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.3
    • /
    • pp.615-623
    • /
    • 2013
  • In this paper we establish a central limit theorem for weighted sums of $Y_n={\sum_{i=1}^{n}}a_n,_iX_i$, where $\{a_{n,i},\;n{\in}N,\;1{\leq}i{\leq}n\}$ is an array of nonnegative numbers such that ${\sup}_{n{\geq}1}{\sum_{i=1}^{n}}a_{n,i}^2$ < ${\infty}$, ${\max}_{1{\leq}i{\leq}n}a_{n,i}{\rightarrow}0$ and $\{X_i,\;i{\in}N\}$ is a sequence of linear negatively quadrant dependent random variables with $EX_i=0$ and $EX_i^2$ < ${\infty}$. Using this result we will obtain a central limit theorem for partial sums of linear processes.

A Central Limit Theorem for a Stationary Linear Process Generated by Linearly Positive Quadrant Dependent Process

  • Kim, Tae-Sung;Ko, Mi-Hwa
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.1
    • /
    • pp.153-158
    • /
    • 2001
  • A central limit theorem is obtained for stationary linear process of the form -Equations. See Full-text-, where {$\varepsilon$$_{t}$} is a strictly stationary sequence of linearly positive quadrant dependent random variables with E$\varepsilon$$_{t}$=0, E$\varepsilon$$^2$$_{t}$<$\infty$ and { $a_{j}$} is a sequence of real numbers with -Equations. See Full-text- we also derive a functional central limit theorem for this linear process.ocess.s.

  • PDF

A CENTRAL LIMIT THEOREM FOR GENERAL WEIGHTED SUMS OF LPQD RANDOM VARIABLES AND ITS APPLICATION

  • Ko, Mi-Hwa;Kim, Hyun-Chull;Kim, Tae-Sung
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.3
    • /
    • pp.529-538
    • /
    • 2006
  • In this paper we derive the central limit theorem for ${\sum}^n_{i=l}\;a_{ni}{\xi}_{i},\;where\;\{a_{ni},\;1\;{\le}\;i\;{\le}n\}$ is a triangular array of non-negative numbers such that $sup_n{\sum}^n_{i=l}\;a^2_{ni}\;<\;{\infty},\;max_{1{\le}i{\le}n\;a_{ni}{\to}\;0\;as\;n{\to}{\infty}\;and\;{\xi}'_{i}s$ are a linearly positive quadrant dependent sequence. We also apply this result to consider a central limit theorem for a partial sum of a generalized linear process of the form $X_n\;=\;{\sum}^{\infty}_{j=-{\infty}}a_{k+j}{\xi}_{j}$.