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A CENTRAL LIMIT THEOREM FOR GENERAL
WEIGHTED SUM OF LNQD RANDOM
VARIABLES AND ITS APPLICATION

Hyun-CHULL KIM AND TAE-SunG KiMm

ABSTRACT. In this paper we derive the central limit theorem for
Yo ani&s, where {an:,1 < ¢ < n} is a triangular array of non-
negative numbers such that sup, 30, a2; < 00, maxi<i<n Gni —
0 as n — oo and f;s are a linearly negative quadrant depen-
dent sequence. We also apply this result to consider a central
limit theorem for a partial sum of a generalized linear process

— oo .
Xn = im0 k4565

1. Introduction and results

Lehmann(6] introduced a simple and natural definition of positive
(negative) dependence: A sequence {&;, i € Z} of random variables
is said to be pairwise positive (negative) quadrant dependent (pairwise
PQD(NQD)) if for any real oy, oj and @ # j, P(& > a;,&5 > o) > (L)
P(& > 04)P(& > o). A concept stronger than PQD(NQD) was intro-
duced by Newman|[7]: A sequence {¢;, ¢ € Z} of random variables is said
to be linearly positive(negative) quadrant dependent(LPQD(LNQD)) if

for every pair of disjoint subsets A, B C Z and positive 7’;s

3
(1.1) Y ri&i and Y r;¢; are PQD (NQD).
i€A jeB
Newman[7] established the central limit theorem for a strictly sta-
tionary LPQD(or LNQD) process and Birkel[2] also obtained a func-
tional central limit theorem for LPQD process which is used to ob-
tain the functional central limit theorem for LNQD process. Kim and

Received March 31, 2004.

2000 Mathematics Subject Classification: 60F05, 60G10.

Key words and phrases: central limit theorem, linear process, linearly negative
quadrant dependent, uniformly integrable, triangular array.

This work was supported by KOSEF Grant(R01-2005-000-10696-0).



532 Hyun-Chull Kim and Tae-Sung Kim

Baek[5] extended this result to a stationary linear process of the form
Xy = > 720a;&k-j, where {a;} is a sequence of real numbers with
Z;O:O laj] < oo and {&} is a strictly stationary LPQD process with
E¢ =0, 0 < E£? < oo, which can be extended to the LNQD case by
similar method.

In this paper, we derive a central limit theorem for a linearly negative
quadrant dependent sequence in a double array, weakening the strictly
stationarity assumption with uniform integrability (see Theorem 1.1 be-
low) and apply this result to obtain a central limit theorem for a partial
sum of a linear process X,, = Z;”;_oo ap+;&; generated by linearly neg-
ative quadrant dependent sequence {£;} (see Theorem 1.2 below).

THEOREM 1.1. Let {an;, 1 < ¢ < n} be a triangular array of non-
negative numbers such that

n
(1.2) supZaﬁi < 00
o=l
and
1. ; .
(1.3) 121%Xnanz —0asn — o0

Let {&;} be a centered sequence of linearly negative quadrant depen-
dent random variables such that

(1.4) {€?} is an uniformly integrable family,

(1.5) Var(D amis) = 1,
i=1

and
(1.6) Z Cov(&;, &)~ — 0 as u — oo uniformly in ¢ > 1
Ji—jlzu

(see Cox and Grimmet[3]). Then

n
Zam{i 2, N(0,1) as n — oo.

i=1

REMARK. Theorem 1.1 extends the Newman’s[7] central limit theo-
rem for strictly stationary LNQD sequence from equal weights to general
weights, weakening at the same time the assumption of stationarity.
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CoRrOLLARY 1.1. Let {&;} be a centered sequence of linearly nega-
tive quadrant dependent random variables such that {Ef} is a uniformly
integrable family and let {an;, 1 < i < n} be a triangular array of
nonnegative numbers such that

LY
(1.7) supz o<
=1 ’I’L

s
(1.8) max — — 0 as n — 00,
1<i<n Oy,

where o2 = Var(>_1 | ani&;). If (1.6) holds then, as n — oo

(1.9) —_ Zam{z - N(O 1)

" =1

THEOREM 1.2. Let {a;,j € Z} be a sequence of nonnegative numbers
such that Zj a; < oo and let {§;,j € Z} be a sequence of linearly nega-
tive quadrant dependent random variables which is uniformly integrable
in Ly and satisfies (1.6). Let

o

n
Xk = Z ak+j§j and Sn = ZXz

Assume

(1.10) inf n"lo2 > 0,
n>1

where o2 = Var(S,). Then

Sn
(1.11) on D, N(0,1) as n — oo.

On

This result is an extension of Theorem 18.6.5 in Ibragimov and Lin-
nik[4] from i.i.d. to the linearly negative quadrant dependence case by
adding the condition (1.6) and improves on Kim and Baek’s[5] result
about central limit theorem for alinear processes generated by LNQD
sequences.

2. Proofs

We starts with the following lemma.
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LeEMMA 2.1. (Newman[8]) Let {Z;,1 < i < n} be a sequence of lin-
early negative quadrant dependent random variables with finite second
moments. Then

n n n

|E exp(it Z Z;) H Eexp(itZ;)| < Ct*|Var( Z Z;) — Z Var(Z;)
j=1 7j=1 j=1 j=

for all t € R, where C' > 0 is an arbitrary constant, not depending on n.

PrOOF OF THEOREM 1.1. Without loss of generality we assume that
an; = 0 for all 4 > n and supEE2 = M < co. For every 1 <a<b<n
and 1 < u < b — a we have, after a simple manipulations,

b

b—u
0< Zam- Z an;Cov(&;,§5)”

j=it+u

< Slltp Z COV(fk,fj <Z am) .

Jilk—jlzu

(2.1)

In particular by definition of LNQD, we also have

(Z 5) < MZam

1=a
We shall construct now a triangular array of random variables {Zn:,1 <
i < n} for which we shall make use of Lemma 2.1. Fix a small positive
¢ and find a positive integer u = u, such that, for every n > u +1
n—u b
< () am Y anjCov(£i,&)7)
=1 j=itu
<Le

This is possible because of (2.1) and (1.6). Denote by [z] the integer
part of z and define

K =[]
u(j+1)
Ynj = Z anié-ia _]:0,1, ;

i=uj+1

Aj={i:2Kj <i < 2Kj+ K, Cov(Yni, Yoin1)” < 2 Z Var(Yy;)
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Since 2Cov(Yns, Yn,i+1)” < Var(Yy;) + Var(Y;,;+1), we get that for
every j the set A; is not empty. Now we define the integers my,ms, - -,
my, recurrently by mg = 0:

mj1 = mim{m;m > m;, m € A;}

and define
Mj+1
> Yo, §=0,1,--,
1=m;+1
Aj = {u(mJ —+ 1) +1,-- ,u(mj+1 + 1)}

We observe that

nj = Z ankﬁka j=0,1,---

kEAj

By definition of LNQD Z:ljs are linearly negative quadrant depen-
dent, and from the fact that m; > 2K (j — 1) and mjy; < K(2j + 1)
every set A; contains no more than 3 Ku elements and m;i1/m; —
1 as j — oo . Hence, for every fixed positive € by (1.2)—(1.5) the array
{Zn;:i=1,--- ,n; n > 1} satisfies the Lindeberg’s condition(see Stout
[9]). It remains to observe that by Lemma 2.1 and construction.

|E exp(it Z Znj) — H E exp(itZy;)|

j=1 j=1
n
< ct2]{Var(Z Znj) ZVar Zni)|}
j=1 j=1
< et?*{2( ZCOV nis Znie1) )+ 2( Z Z Cov(Zni, Znj) ™)}
=1 i=1 j=i+2
n—u n n
<4 ani Y anCov(&, &) +2  Cov(Yam,, Yam,+1) "}
i=1 j=itu Jj=1
8 n
< ct?{4e + i7d ZVar(Ym)}

=1
n u(j+1)

= ct?{de + % ZVar( Z an;&i)}

=1 i=uj+1
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n u(j+1)

gct2{4e+ Z > al}

Jj=11i=uj+1
n
ertfe(l +sup Y a)
n
=1

< cthe.

IA

Now the proof is complete by Theorem 4.2 in Billingslely([1]. O
PrOOF OF COROLLARY 1.1. Let 4,; = %M Then we have

max Ap; — 0 asn — oo,
1<i<n

Hence, by Theorem 1.1 the desired result (1.11) follows.

PROOF OF THEOREM 1.2. First note that 3, a;’f < oo and without
restricting the generality, we can assume sup E&g =1. Let

Sn=> Xe= Y O i)
k=1 j=—o0 k=1

In order to apply Theorem 1.1, we fix W,, such that ZI iI>Wa a?- <n”3
and take k, = W,, + n. Then

=D Za’fﬂ -t > Z“kﬂ

lj|<kn k=1 1j|>kn k=1
= Tn + Un (Sa’Y)'

By Cauchy Schwarz inequality and assumptions we have the following
estimate

Var(Up) < ) Var (Z o )

|d]>kn
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< >0 O akts/on)EE;

l71>kn k=1
n
-2 2
< noy, E , (Z a’k+j)
|7|>kn k=1
2 _—2 2
<no, Z aj
|7]>kn—n
2 _—2 2
. < n‘o, E aj
|71>Wn

< n"la,j2 — 0 asn— oo,
which yields

(2.2) U, — 0 in probability as n — oc.

It remains only to prove that T, 2, N(0,1) by Theorem 4.1 of
Billingsley[1]. Put

Z?:l Ok

On

(23) Ank =
From assumption Y a; < oo (a; > 0), (1.10) and (2.3) we obtain

n
SUP _oo<k<oo Zj:l Ak+j
On

— 0 as n — 00,

max anpx — 0 as n — oo,
1<k<n

n
sup Z a2, < oo.

n

k=1
Hence, by Theorem 1.1
(2.4) T, -2 N(0,1)
and from (2.2) and (2.4) the desired result (1.10) follows. O
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