A CENTRAL LIMIT THEOREM FOR GENERAL WEIGHTED SUM OF LNQD RANDOM VARIABLES AND ITS APPLICATION

HYUN-CHULL KIM AND TAE-SUNG KIM

ABSTRACT. In this paper we derive the central limit theorem for $\sum_{i=1}^n a_{ni}\xi_i$, where $\{a_{ni}, 1 \leq i \leq n\}$ is a triangular array of nonnegative numbers such that $\sup_n \sum_{i=1}^n a_{ni}^2 < \infty$, $\max_{1 \leq i \leq n} a_{ni} \to 0$ as $n \to \infty$ and $\xi_i's$ are a linearly negative quadrant dependent sequence. We also apply this result to consider a central limit theorem for a partial sum of a generalized linear process $X_n = \sum_{i=-\infty}^\infty a_{k+j}\xi_j$.

1. Introduction and results

Lehmann[6] introduced a simple and natural definition of positive (negative) dependence: A sequence $\{\xi_i, i \in Z\}$ of random variables is said to be pairwise positive (negative) quadrant dependent (pairwise PQD(NQD)) if for any real α_i, α_j and $i \neq j$, $P(\xi_i > \alpha_i, \xi_j > \alpha_j) \geq (\leq)$ $P(\xi_i > \alpha_i)P(\xi_j > \alpha_j)$. A concept stronger than PQD(NQD) was introduced by Newman[7]: A sequence $\{\xi_i, i \in Z\}$ of random variables is said to be linearly positive(negative) quadrant dependent(LPQD(LNQD)) if for every pair of disjoint subsets $A, B \subset Z$ and positive $r'_i s$

(1.1)
$$\sum_{i \in A} r_i \xi_i \text{ and } \sum_{j \in B} r_j \xi_j \text{ are } PQD (NQD).$$

Newman[7] established the central limit theorem for a strictly stationary LPQD(or LNQD) process and Birkel[2] also obtained a functional central limit theorem for LPQD process which is used to obtain the functional central limit theorem for LNQD process. Kim and

Received March 31, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 60F05, 60G10.

Key words and phrases: central limit theorem, linear process, linearly negative quadrant dependent, uniformly integrable, triangular array.

This work was supported by KOSEF Grant(R01-2005-000-10696-0).

Baek[5] extended this result to a stationary linear process of the form $X_k = \sum_{j=0}^{\infty} a_j \xi_{k-j}$, where $\{a_j\}$ is a sequence of real numbers with $\sum_{j=0}^{\infty} |a_j| < \infty$ and $\{\xi_k\}$ is a strictly stationary LPQD process with $E\xi_i = 0, \ 0 < E\xi_i^2 < \infty$, which can be extended to the LNQD case by similar method.

In this paper, we derive a central limit theorem for a linearly negative quadrant dependent sequence in a double array, weakening the strictly stationarity assumption with uniform integrability (see Theorem 1.1 below) and apply this result to obtain a central limit theorem for a partial sum of a linear process $X_n = \sum_{j=-\infty}^{\infty} a_{k+j} \xi_j$ generated by linearly negative quadrant dependent sequence $\{\xi_j\}$ (see Theorem 1.2 below).

THEOREM 1.1. Let $\{a_{ni}, 1 \leq i \leq n\}$ be a triangular array of non-negative numbers such that

$$\sup_{n} \sum_{i=1}^{n} a_{ni}^{2} < \infty$$

and

(1.3)
$$\max_{1 \le i \le n} a_{ni} \to 0 \text{ as } n \to \infty.$$

Let $\{\xi_i\}$ be a centered sequence of linearly negative quadrant dependent random variables such that

(1.4)
$$\{\xi_i^2\}$$
 is an uniformly integrable family,

(1.5)
$$\operatorname{Var}(\sum_{i=1}^{n} a_{ni}\xi_{i}) = 1,$$

and

(1.6)
$$\sum_{j:|i-j|\geq u} \operatorname{Cov}(\xi_i, \xi_j)^- \to 0 \text{ as } u \to \infty \text{ uniformly in } i \geq 1$$

(see Cox and Grimmet[3]). Then

$$\sum_{i=1}^{n} a_{ni} \xi_i \xrightarrow{\mathcal{D}} N(0,1) \text{ as } n \to \infty.$$

REMARK. Theorem 1.1 extends the Newman's [7] central limit theorem for strictly stationary LNQD sequence from equal weights to general weights, weakening at the same time the assumption of stationarity.

COROLLARY 1.1. Let $\{\xi_i\}$ be a centered sequence of linearly negative quadrant dependent random variables such that $\{\xi_i^2\}$ is a uniformly integrable family and let $\{a_{ni}, 1 \leq i \leq n\}$ be a triangular array of nonnegative numbers such that

$$\sup_{n} \sum_{i=1}^{n} \frac{a_{ni}^2}{\sigma_n^2} < \infty,$$

(1.8)
$$\max_{1 \le i \le n} \frac{a_{ni}}{\sigma_n} \to 0 \text{ as } n \to \infty,$$

where $\sigma_n^2 = \text{Var}(\sum_{i=1}^n a_{ni}\xi_i)$. If (1.6) holds then, as $n \to \infty$

(1.9)
$$\frac{1}{\sigma_n} \sum_{i=1}^n a_{ni} \xi_i \xrightarrow{\mathcal{D}} \mathcal{N}(0,1).$$

THEOREM 1.2. Let $\{a_j, j \in Z\}$ be a sequence of nonnegative numbers such that $\sum_j a_j < \infty$ and let $\{\xi_j, j \in Z\}$ be a sequence of linearly negative quadrant dependent random variables which is uniformly integrable in L_2 and satisfies (1.6). Let

$$X_k = \sum_{j=-\infty}^{\infty} a_{k+j} \xi_j$$
 and $S_n = \sum_{i=1}^n X_i$.

Assume

(1.10)
$$\inf_{n>1} n^{-1} \sigma_n^2 > 0,$$

where $\sigma_n^2 = \text{Var}(S_n)$. Then

(1.11)
$$\frac{S_n}{\sigma_n} \xrightarrow{\mathcal{D}} \mathcal{N}(0,1) \text{ as } n \to \infty.$$

This result is an extension of Theorem 18.6.5 in Ibragimov and Linnik[4] from i.i.d. to the linearly negative quadrant dependence case by adding the condition (1.6) and improves on Kim and Baek's[5] result about central limit theorem for alinear processes generated by LNQD sequences.

2. Proofs

We starts with the following lemma.

LEMMA 2.1. (Newman[8]) Let $\{Z_i, 1 \leq i \leq n\}$ be a sequence of linearly negative quadrant dependent random variables with finite second moments. Then

$$|E \exp(it \sum_{j=1}^{n} Z_j) - \prod_{j=1}^{n} E \exp(it Z_j)| \le Ct^2 |\operatorname{Var}(\sum_{j=1}^{n} Z_j) - \sum_{j=1}^{n} \operatorname{Var}(Z_j)|$$

for all $t \in \mathbb{R}$, where C > 0 is an arbitrary constant, not depending on n.

PROOF OF THEOREM 1.1. Without loss of generality we assume that $a_{ni} = 0$ for all i > n and $\sup E\xi_n^2 = M < \infty$. For every $1 \le a < b \le n$ and $1 \le u \le b - a$ we have, after a simple manipulations,

(2.1)
$$0 \leq \sum_{i=a}^{b-u} a_{ni} \sum_{j=i+u}^{b} a_{nj} \operatorname{Cov}(\xi_i, \xi_j)^{-}$$

$$\leq \sup_{k} \left(\sum_{j:|k-j|\geq u} \operatorname{Cov}(\xi_k, \xi_j)^{-} \right) \left(\sum_{i=a}^{b} a_{ni}^2 \right).$$

In particular by definition of LNQD, we also have

$$\operatorname{Var}\left(\sum_{i=a}^{b} a_{ni}\xi_{i}\right) \leq M \sum_{i=a}^{b} a_{ni}^{2}.$$

We shall construct now a triangular array of random variables $\{Z_{ni}, 1 \leq i \leq n\}$ for which we shall make use of Lemma 2.1. Fix a small positive ϵ and find a positive integer $u = u_{\epsilon}$ such that, for every $n \geq u + 1$

$$0 \le \left(\sum_{i=1}^{n-u} a_{ni} \sum_{j=i+u}^{b} a_{nj} \operatorname{Cov}(\xi_i, \xi_j)^{-}\right)$$

$$\le \epsilon.$$

This is possible because of (2.1) and (1.6). Denote by [x] the integer part of x and define

part of
$$x$$
 and define
$$K = \left[\frac{1}{\epsilon}\right]$$

$$Y_{nj} = \sum_{i=uj+1}^{u(j+1)} a_{ni}\xi_i, \ j = 0, 1, \cdots,$$

$$A_j = \left\{i : 2Kj \le i < 2Kj + K, \operatorname{Cov}(Y_{ni}, Y_{n,i+1})^- \le \frac{2}{K} \sum_{i=2Kj}^{2Kj+K} \operatorname{Var}(Y_{ni})\right\}.$$

Since $2\operatorname{Cov}(Y_{ni}, Y_{n,i+1})^- \leq \operatorname{Var}(Y_{ni}) + \operatorname{Var}(Y_{n,i+1})$, we get that for every j the set A_j is not empty. Now we define the integers m_1, m_2, \cdots, m_n recurrently by $m_0 = 0$:

$$m_{j+1} = \min\{m; m > m_j, m \in A_j\}$$

and define

$$Z_{nj} = \sum_{i=m_j+1}^{m_{j+1}} Y_{ni}, \ j = 0, 1, \cdots,$$
$$\Delta_j = \{ u(m_j + 1) + 1, \cdots, u(m_{j+1} + 1) \}.$$

We observe that

$$Z_{nj} = \sum_{k \in \Delta_j} a_{nk} \xi_k, \ j = 0, 1, \cdots.$$

By definition of LNQD $Z'_{nj}s$ are linearly negative quadrant dependent, and from the fact that $m_j \geq 2K(j-1)$ and $m_{j+1} \leq K(2j+1)$ every set Δ_j contains no more than 3 Ku elements and $m_{j+1}/m_j \rightarrow 1$ as $j \rightarrow \infty$. Hence, for every fixed positive ϵ by (1.2)–(1.5) the array $\{Z_{nj}: i=1,\cdots,n;\ n\geq 1\}$ satisfies the Lindeberg's condition(see Stout [9]). It remains to observe that by Lemma 2.1 and construction.

$$|E \exp(it \sum_{j=1}^{n} Z_{nj}) - \prod_{j=1}^{n} E \exp(it Z_{nj})|$$

$$\leq ct^{2} |\{ \operatorname{Var}(\sum_{j=1}^{n} Z_{nj}) - \sum_{j=1}^{n} \operatorname{Var}(Z_{nj})| \}$$

$$\leq ct^{2} \{ 2(\sum_{i=1}^{n} \operatorname{Cov}(Z_{ni}, Z_{n,i+1})^{-}) + 2(\sum_{i=1}^{n-2} \sum_{j=i+2}^{n} \operatorname{Cov}(Z_{ni}, Z_{nj})^{-}) \}$$

$$\leq ct^{2} \{ 4\sum_{i=1}^{n-u} a_{ni} \sum_{j=i+u}^{n} a_{nj} \operatorname{Cov}(\xi_{i}, \xi_{j})^{-} + 2\sum_{j=1}^{n} \operatorname{Cov}(Y_{n,m_{j}}, Y_{n,m_{j}+1})^{-} \}$$

$$\leq ct^{2} \{ 4\epsilon + \frac{8}{K} \sum_{i=1}^{n} \operatorname{Var}(Y_{ni}) \}$$

$$= ct^{2} \{ 4\epsilon + \frac{8}{K} \sum_{j=1}^{n} \operatorname{Var}(\sum_{i=uj+1}^{u(j+1)} a_{ni} \xi_{i}) \}$$

$$\leq ct^{2} \{ 4\epsilon + \frac{8M}{K} \sum_{j=1}^{n} \sum_{i=uj+1}^{u(j+1)} a_{n_{i}}^{2} \}$$

$$\leq c_{1}t^{2}\epsilon \{ 1 + \sup_{n} \sum_{i=1}^{n} a_{ni}^{2} \}$$

$$\leq c_{2}t^{2}\epsilon.$$

Now the proof is complete by Theorem 4.2 in Billingslely[1]. \Box

PROOF OF COROLLARY 1.1. Let $A_{ni} = \frac{a_{ni}}{\sigma_n}$. Then we have

$$\max_{1 \le i \le n} A_{ni} \to 0 \text{ as } n \to \infty,$$

$$\sup_{n} \sum_{i=1}^{n} A_{ni}^{2} < \infty,$$

$$\operatorname{Var}(\sum_{i=1}^{n} A_{ni}\xi_i) = 1.$$

Hence, by Theorem 1.1 the desired result (1.11) follows.

PROOF OF THEOREM 1.2. First note that $\sum_j a_j^2 < \infty$ and without restricting the generality, we can assume $\sup E\xi_k^2 = 1$. Let

$$S_n = \sum_{k=1}^n X_k = \sum_{j=-\infty}^\infty (\sum_{k=1}^n a_{k+j}) \xi_j.$$

In order to apply Theorem 1.1, we fix W_n such that $\sum_{|j|>W_n} a_j^2 < n^{-3}$ and take $k_n = W_n + n$. Then

$$\frac{S_n}{\sigma_n} = \sum_{|j| \le k_n} (\sum_{k=1}^n a_{k+j}) \frac{\xi_j}{\sigma_n} + \sum_{|j| > k_n} (\sum_{k=1}^n a_{k+j}) \frac{\xi_j}{\sigma_n}$$
$$= T_n + U_n(\text{say}).$$

By Cauchy Schwarz inequality and assumptions we have the following estimate

$$\operatorname{Var}(U_n) \le \sum_{|j| > k_n} \operatorname{Var}\left(\sum_{k=1}^n a_{k+j} \frac{\xi_j}{\sigma_n}\right)$$

$$\leq \sum_{|j|>k_n} (\sum_{k=1}^n a_{k+j}/\sigma_n)^2 E \xi_j^2$$

$$\leq n\sigma_n^{-2} \sum_{|j|>k_n} (\sum_{k=1}^n a_{k+j}^2)$$

$$\leq n^2 \sigma_n^{-2} \sum_{|j|>k_n-n} a_j^2$$

$$\leq n^2 \sigma_n^{-2} \sum_{|j|>W_n} a_j^2$$

$$\leq n^{-1} \sigma_n^{-2} \to 0 \text{ as } n \to \infty,$$

which yields

(2.2)
$$U_n \to 0$$
 in probability as $n \to \infty$.

It remains only to prove that $T_n \xrightarrow{\mathcal{D}} N(0,1)$ by Theorem 4.1 of Billingslev[1]. Put

$$a_{nk} = \frac{\sum_{j=1}^{n} a_{k+j}}{\sigma_n} .$$

From assumption $\sum_{j} a_{j} < \infty$ $(a_{j} > 0)$, (1.10) and (2.3) we obtain

$$\frac{\sup_{-\infty < k < \infty} \sum_{j=1}^{n} a_{k+j}}{\sigma_n} \to 0 \text{ as } n \to \infty,$$
$$\max_{1 \le k \le n} a_{nk} \to 0 \text{ as } n \to \infty,$$

$$\sup_{n} \sum_{k=1}^{n} a_{nk}^{2} < \infty.$$

Hence, by Theorem 1.1

$$(2.4) T_n \xrightarrow{\mathcal{D}} N(0,1)$$

and from (2.2) and (2.4) the desired result (1.10) follows.

ACKNOWLEDGEMENTS. The authors wish to thank the referee for a very thorough review of this paper and Tae-Sung Kim is the corresponding author.

References

- [1] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968.
- [2] P. Birkel, A functional central limit theorem for positively dependent random variables, J. Multivariate Anal. 44 (1993), 314–320.
- [3] J. T. Cox and G. Grimmett, Central limit theorems for associated random variables and the percolation model, Ann. Probab. 12 (1984), 514–528.
- [4] I. A. Ibragimov and Yu. V. Linnik, Independent and Stationary Sequences of Random Variables, Volters, Groningen, 1971.
- [5] T. S. Kim and J. L. Baek, A central limit theorem for stationary linear processes generated by linearly positive quadrant dependent process, Statist. Probab. Lett. 5 (2001), 299-305.
- [6] E. L. Lehmann, Some concepts of dependence, Ann. Statist. 37 (1966), 1137-1153.
- [7] C. M. Newman, Asymptotic independence and limit theorems for positively and negatively dependent random variables, In: Tong, Y. L.(Ed.), Stochastics and Probability 5 (1984), 127-140(Inst. Math. Statist. Hayward, C.A.)
- [8] ______, Normal fluctuations and the FKG inequalities, Comm. Math. Phys. 91 (1980), 75-80.
- [9] W. F. Stout, Almost Sure Convergence, Academic Press, New York, 1974.

Hyun-Chull Kim
Division of Computer and Information Science
Daebul University
Yeongam 526-720, Korea
E-mail: kimhc@mail.daebul.ac.kr

Tae-Sung Kim
Division of Mathematics and Informational Statistics and Institute of Basic Natural Science
WonKwang University
Iksan 570-749, Korea
E-mail: starkim@wonkwang.ac.kr