• Title/Summary/Keyword: cementitious composite

Search Result 183, Processing Time 0.04 seconds

Effect of length and content of steel fibers on the flexural and impact performance of self-compacting cementitious composite panels

  • Denise-Penelope N. Kontoni;Behnaz Jahangiri;Ahmad Dalvand;Mozafar Shokri-Rad
    • Advances in concrete construction
    • /
    • v.15 no.1
    • /
    • pp.23-39
    • /
    • 2023
  • One of the important problems of concrete placing is the concrete compaction, which can affect the strength, durability and apparent quality of the hardened concrete. Therefore, vibrating operations might be accompanied by much noise and the need for training the involved workers, while inappropriate functioning can result in many problems. One of the most important methods to solve these problems is to utilize self-compacting cementitious composites instead of the normal concrete. Due to their benefits of these new materials, such as high tensile, compressive, and flexural strength, have drawn the researchers' attention to this type of cementitious composite more than ever. In this experimental investigation, six mixing designs were selected as a base to acquire the best mechanical properties. Moreover, forty-eight rectangular composite panels with dimensions of 300 mm × 400 mm and two thickness values of 30 mm and 50 mm were cast and tested to compare the flexural and impact energy absorption. Steel fibers with volume fractions of 0%, 0.5% and 1% and with lengths of 25 mm and 50 mm were imposed in order to prepare the required cement composites. In this research, the composite panels with two thicknesses of 30 mm and 50 mm, classified into 12 different groups, were cast and tested under three-point flexural bending and repeated drop weight impact test, respectively. Also, the examination and comparison of flexural energy absorption with impact energy absorption were one of the other aims of this research. The obtained results showed that the addition of fibers of longer length improved the mechanical properties of specimens. On the other hand, the findings of the flexural and impact test on the self-compacting composite panels indicated a stronger influence of the long-length fibers.

Rheological control to develop a self-consolidating ECC (자기충전용 ECC를 개발하기 위한 레올로지 특성에 관한 실험)

  • Kim, Jeong-Su;Lee, Jong-Han;Kim, Yun-Yong;Kim, Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.539-540
    • /
    • 2009
  • A self-consolidating engineered cementitious composite (ECC), which exhibits tensile strain-hardening behavior in the hardened state, while maintaining self-consolidating properties in the fresh state, has been developed by employing electrosteric dispersion and stabilization.

  • PDF

Lap Splice Performance of Reinforcing Bars in High Performance Fiber Reinforced Cementitious Composite under Repeated Loading (반복하중 하에서 고인성 시멘트 복합체 내 철근의 겹침이음성능)

  • Jeon, Esther;Kim, Sun-Woo;Yang, Ii-Seung;Han, Byung-Chan;Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.181-184
    • /
    • 2005
  • Experimental results on lap splice performance of high performance fiber reinforced cementitious composite(HPFRCC) with fiber types under repeated loading are reported. Fiber types were polypropylene(PP), polyethylene(PE) and hybrid fiber[polyethylene fiber+steel cord(PE+SC)]. The development length($l_d$) was calculated according to the relevant ACI code requirements for reinforcing bars in concrete. The current experimental results demonstrated clearly that the use of fibers in cementitious matrixes increases significantly the splice strength of reinforcing bars in tension. Also, the presence of fibers increased the number of cracks formed around the spliced bars.

  • PDF

Experimental Study on the Properties of High Performance Fiber Reinforced Cementitious Composite with PP and PE Fiber (PP섬유와 PE섬유를 혼입한 고인성 섬유보강 시멘트 복합체의 특성에 관한 실험적 연구)

  • Byun, Jang-Bae;Lee, Won-Suk;Jeon, Esther;Kim, Sun-Woo;Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.381-384
    • /
    • 2006
  • Fibers are increasingly being used for the reinforcement of cementitious matrix to enhance the toughness and energy absorption capacity and to reduce the cracking sensitivity of the matrix. In the past decade, high performance fiber reinforced cementitious composite(HPFRCC) have evolved with intensified research. HPFRCC for structural applications has been developed under the performance driven design approach. It is the aim of this study to obtain development of hybrid-HPFRCC using polypropylene fibers and polyethylene fibers. It was targeted the requirement of economical mixing and application to structure member.

  • PDF

Study of Flexural Performance and Behavior of Ductile Fiber Reinforced Cementitious composite(DFRCC) Members Produced using Extruding Method (Extruding 방법에 의해 제작된 고기능성 시멘트계 복합재료 부재의 휨 성능 및 거동 연구)

  • Kim, Jang-Ho;Lim, Yun-Muk;Park, Jeong-Ho;Kim, Yun-Ho;Hung, Hung;Kiet, Kiet
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.641-644
    • /
    • 2006
  • Recently, fiber cementitious composite has been researched due to its good ductility. In this paper, Ductile Fiber Reinforcement Cementitious Coposite (DFRCC) is applied as reinforcement in concrete to prove its better performance. Compare to ordinary concrete, DFRCC has higher ductility which helps control the propagation of cracking without decreasing the elastic modulus and ultimate strength. In this research, experiments of different mixture ratios have been implemented to find a suitable mixture ratio value to produce high performance DFRCC material.

  • PDF

A Review of Nanomaterials in Cement-Based Composite

  • LI, MAO;Kim, Jin-Man
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.174-186
    • /
    • 2019
  • This paper reviews the development condition of nanomaterials used in concrete over years. The definitions of nanomaterial, nanotechnology, and nano-concrete are reviewed. The impacts of nanomaterials on cementitious material in the point of advantages and disadvantages are analyzed. Moreover, this paper analyzes and classifies the nanomaterials into the extra quality enhancement and modification to plain cementitious composite. Indeed, the outstanding properties of the embedded nanomaterials can be introduced to concrete such as the mechanical improvement, pore structure refinement, hydrate acceleration, and smartness modifying of self-cleaning, and/or self-sensing. Before the full potential of nanotechnology can be realized in concrete applications, various techniques have to be solved including proper dispersion, compatibility of the nanomaterials in cement, processing, manufacturing, safety, handling issues, scale-up, cost, the impact on the environment and human health.

A Fundamental Study on the Influence of Performance of Cementitious Composites of Inorganic Core Material for Self-Healing Capsule of Cracks (균열 자기치유를 위한 캡슐용 무기계 코어재료의 시멘트 복합체 성능에 미치는 영향에 관한 기초적 연구)

  • Choi, Yun-Wang;Oh, Sung-Rok;Choi, Byung-Keol;Kim, Cheol-Gyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.74-82
    • /
    • 2017
  • In this study, we prepared a core material based on the inorganic materials in liquid form for applying an inorganic-based core material to a core material for the self-healing capsules as a part of the basic study to manufacture of self-healing capsule that can heal cracks of cementitious composite. Manufactured core material based on the inorganic materials were applied directly to the cement composite before its encapsulation, were evaluated the effect on performance of cementitious composite as wall as repair performance of the cracks in the cracks. The test results showed that core material based on the inorganic materials was effective to improve the compressive and adhesion strength, had an absorption, permeation water, penetration of chloride iones and freeze-thaw resistance performance. Through the results of this paper, we want to utilize the results as a basis data of the performance of the cement composite that can be obtained when applied to inorganic core materials based on self-healing capsules and future advances localized self-healing capsule technology.

The Electrical Properties of Cementitious Composites with Carbon Black and MWCNT for the Development of Cement-Based Battery (시멘트기반 배터리 개발을 위한 Carbon Black 및 MWCNT 혼입 시멘트 복합체의 전기적 특성 분석)

  • Lee, Joo-Ha
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.212-213
    • /
    • 2018
  • The cementitious composites have been developed to satisfy various demands of the construction market. The conductive concrete, which is a carbon-based cementitious composite, was used for the deicing or the detecting the internal crack. The cement-based battery is a technology that applies the basic concept of the alkaline battery to these conductive concretes. The cementitious composites could have a function as batteries, through a mixing of anode and cathode, which were consist of the zinc and manganese dioxide powder. The carbon-based materials, which have a significant effect on electrical properties, could be considered as the main variable in cement-based batteries. Therefore, in this study, the effects of carbon-based materials were investigated. Two types of materials, including the Carbon black and Multi-walled carbon nanotube(MWCNT), were considered as the main variables. From the experiment results, the electrical characteristics such as resistance, voltage, and current were compared according to the age.

  • PDF

Experimental and analytical investigation of the shear behavior of strain hardening cementitious composites

  • Georgiou, Antroula V.;Pantazopoulou, Stavroula J.
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.19-30
    • /
    • 2019
  • The mechanical behavior of Fiber Reinforced Cementitious Composites (FRCC) under direct shear is studied through experiment and analytical simulation. The cementitious composite considered contains 55% replacement of cement with fly ash and 2% (volume ratio) of short discontinuous synthetic fibers (in the form of mass reinforcement, comprising PVA - Polyvinyl Alcohol fibers). This class of cementitious materials exhibits ductility under tension with the formation of multiple fine cracks and significant delay of crack stabilization (i.e., localization of cracking at a single location). One of the behavioral parameters that concern structural design is the shear strength of this new type of fiber reinforced composites. This aspect was studied in the present work with the use of Push-off tests. The shear strength is then compared to the materials' tensile and splitting strength values.

Experimental Investigation on the Blast Resistance of Fiber-Reinforced Cementitious Composite Panels Subjected to Contact Explosions

  • Nam, Jeongsoo;Kim, Hongseop;Kim, Gyuyong
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.29-43
    • /
    • 2017
  • This study investigates the blast resistance of fiber-reinforced cementitious composite (FRCC) panels, with fiber volume fractions of 2%, subjected to contact explosions using an emulsion explosive. A number of FRCC panels with five different fiber mixtures (i.e., micro polyvinyl alcohol fiber, micro polyethylene fiber, macro hooked-end steel fiber, micro polyvinyl alcohol fiber with macro hooked-end steel fiber, and micro polyethylene fiber with macro hooked-end steel fiber) were fabricated and tested. In addition, the blast resistance of plain panels (i.e., non-fiber-reinforced high strength concrete, and non-fiber-reinforced cementitious composites) were examined for comparison with those of the FRCC panels. The resistance of the panels to spall failure improved with the addition of micro synthetic fibers and/or macro hooked-end steel fibers as compared to those of the plain panels. The fracture energy of the FRCC panels was significantly higher than that of the plain panels, which reduced the local damage experienced by the FRCCs. The cracks on the back side of the micro synthetic fiber-reinforced panel due to contact explosions were greatly controlled compared to the macro hooked-end steel fiber-reinforced panel. However, the blast resistance of the macro hooked-end steel fiber-reinforced panel was improved by hybrid with micro synthetic fibers.