References
- ACI Committee 318 (2014), Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (318R-14), American Concrete Institute, Farmington Hills, MI, USA.
- Afzali-Naniz, O. and Mazloom, M. (2019), "Fracture behavior of self-compacting semi-lightweight concrete containing nanosilica", Adv. Struct. Eng., 22(10), 2264-2277. https://doi.org/10.1177/1369433219837426
- Ahmadi, M., Kheyroddin, A., Dalvand, A. and Kioumarsi, M. (2020), "New empirical approach for determining nominal shear capacity of steel fiber reinforced concrete beams", Constr. Build. Mater., 234, p. 117293. https://doi.org/10.1016/j.conbuildmat.2019.117293
- Arioglu, N., Girgin, Z.C. and Arioglu, E. (2006), "Evaluation of ratio between splitting tensile strength and compressive strength for concretes up to 120 MPa and its application in strength criterion", ACI Mater. J., 103(1), 18-24.
- Aslani, F. and Nejadi, S. (2012), "Bond Behavior of Reinforcement in Conventional and Self-Compacting Concrete", Adv. Struct. Eng., 15(2), 2033-2051. https://doi.org/10.1260/1369-4332.15.12.2033
- ASTM C39 / C39M-09a (2009), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International; West Conshohocken, PA, USA. www.astm.org, https://doi.org/10.1520/C0039_C0039M-09A
- ASTM C39 / C39M-21 (2021), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, USA. www.astm.org, https://doi.org/10.1520/C0039_C0039M-21
- ASTM C496 / C496M-04 (2004), Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International; West Conshohocken, PA, USA. www.astm.org, https://doi.org/10.1520/C0496_C0496M-04
- ASTM C496 / C496M-17 (2017), Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International; West Conshohocken, PA, USA. www.astm.org, https://doi.org/10.1520/C0496_C0496M-17
- ASTM C1609 / C1609M-05 (2005), Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading), ASTM International; West Conshohocken, PA, USA. www.astm.org, https://doi.org/10.1520/C1609_C1609M-05
- ASTM C1609 / C1609M-19 (2019), Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading), ASTM International; West Conshohocken, PA, USA. www.astm.org, https://doi.org/10.1520/C1609_C1609M-19
- Banthia, N. and Sappakittipakorn, M. (2007), "Toughness enhancement in steel fiber reinforced concrete through fiber hybridization", Cement Concrete Res., 37(9), 1366-1372. https://doi.org/10.1016/j.cemconres.2007.05.005
- Benyamina, S., Menadi, B., Bernard, S.K. and Kenai, S. (2019), "Performance of self-compacting concrete with manufactured crushed sand", Adv. Concrete Constr., Int. J., 7(2), 87-96. https://doi.org/10.12989/acc.2019.7.2.087
- Carino, N.J. and Lew, H.S. (1982), "Re-examination of the relation between splitting tensile and compressive strength of normal weight concrete", ACI Mater. J., 79(3), 214-219.
- CEB-FIP Model Code for Concrete Structures (1991), Evaluation of the Time Dependent Behaviour of Concrete, Bulletin d'Information No. 199, Comite European du Beton/Federation Internationale de la Precontrainte, Lausanne, Switzerland.
- Chan, C., Yu, T. and Zhang, S. (2018), "Compressive behaviour of square fibre-reinforced polymer-concrete-steel hybrid multi-tube concrete columns", Adv. Struct. Eng., 21(8), 1162-1172. https://doi.org/10.1177/1369433217732499
- Dalvand, A. and Ahmadi, M. (2021), "Impact failure mechanism and mechanical characteristics of steel fiber reinforced self-compacting cementitious composites containing silica fume", Eng. Sci. Technol., 24(3), 736-748. https://doi.org/10.1016/j.jestch.2020.12.016
- Djelloul, O.K., Menadi, B., Wardeh, G. and Kenai, S. (2018), "Performance of self-compacting concrete made with coarse and fine recycled concrete aggregates and ground granulated blast-furnace slag", Adv. Concrete Constr., Int. J., 6(2), 103-121. https://doi.org/10.12989/acc.2018.6.2.103
- Facconi, L., Minelli, F. and Plizzari, G. (2016), "Steel fiber reinforced self-compacting concrete thin slabs - Experimental study and verification against Model Code 2010 provisions", Eng. Struct., 122(1), 226-237. https://doi.org/10.1016/j.engstruct.2016.04.030
- Gardner, N.J. (1990), "Effect of Temperature on the Early-Age Properties of Type I, Type III, and Type I/Fly Ash Concretes", ACI Materials Journal, 87(1), 68-78.
- Huang, B.-T., Wu, J.-Q., Yu, J., Dai, J.-G., Leung, C.K.Y. and Li, V.C. (2021), "Seawater sea-sand engineered/strain-hardening cementitious composites (ECC/SHCC): Assessment and modeling of crack characteristics", Cement Concrete Res., 140, 106292. https://doi.org/10.1016/j.cemconres.2020.106292
- Karanth, S.S., Ghorpade, V.G. and Rao, H.S. (2017), "Shear and impact strength of waste plastic fibre reinforced concrete", Adv. Concrete Constr., Int. J., 5(2), 173-182. https://doi.org/10.12989/acc.2017.5.2.173
- Karihaloo, B.L. and Wang, J. (1997), "Micromechanical modelling of strain hardening and tension softening in cementitious composites", Computat. Mech., 19, 453-462. https://doi.org/10.1007/s004660050193
- Karimipour, A., Ghalehnovi, M., de Brito, J. and Attari, M. (2020), "The effect of polypropylene fibres on the compressive strength, impact and heat resistance of self-compacting concrete", Structures, 25, 72-87. https://doi.org/10.1016/j.istruc.2020.02.022
- Kim, S., Jeong, S.Y. and Kang, T.H.K. (2019), "Design of small impact test device for concrete panels subject to high speed collision", Adv. Concrete Constr., Int. J., 7(1), 23-30. https://doi.org/10.12989/acc.2019.7.1.023
- Kong, H.-J., Bike, S.G. and Li, V.C. (2003), "Development of a self-consolidating engineered cementitious composite employing electrosteric dispersion/stabilization", Cement Concrete Compos., 25(3), 301-309. https://doi.org/10.1016/S0958-9465(02)00057-4
- Lavanya, G. and Jegan, J. (2015), "Evaluation of relationship between split tensile strength and compressive strength for geopolymer concrete of varying grades and molarity", Int. J. Appl. Eng. Res., 10(15), 35523-35527.
- Lenka, S. and Panda, K.C. (2017), "Effect of metakaolin on the properties of conventional and self compacting concrete", Adv. Concrete Constr., Int. J., 5(1), 31-48. https://doi.org/10.12989/acc.2017.5.1.31
- Lepech, M.D., Li, V.C., Robertson, R.E. and Keoleian, G.A. (2008), "Design of green engineered cementitious composites for improved sustainability", ACI Mater. J., 105(6), 567-575.
- Li, V.C. (1993), "From Micromechanics to Structural Engineering - the Design of Cementitous Composites for Civil Engineering Applications", JSCE J. Struct. Mech. Earthq. Eng., 10(2), 37-48. https://doi.org/10.2208/jscej.1993.471_1
- Li, V.C. and Yang, E.-H. (2007), "Self Healing in Concrete Materials", In: van der Zwaag, S. (eds), Self Healing Materials, Springer Series in Materials Science, Vol. 100, Springer, Dordrecht, pp. 161-193. https://doi.org/10.1007/978-1-4020-6250-6_8
- Liu, Z., Chen, X., Wang, X. and Diao, H. (2022), "Investigation on the dynamic compressive behavior of waste tires rubber-modified self-compacting concrete under multiple impacts loading", J. Cleaner Product., 336, 130289. https://doi.org/10.1016/j.jclepro.2021.130289
- Mastali, M., Dalvand, A. and Sattarifard, A. (2017), "The impact resistance and mechanical properties of the reinforced self-compacting concrete incorporating recycled CFRP fiber with different lengths and dosages", Compos. Part B: Eng., 112, 74-92. https://doi.org/10.1016/j.compositesb.2016.12.029
- Moghadam, A.S., Omidinasab, F. and Dalvand, A. (2020), "Experimental investigation of (FRSC) cementitious composite functionally graded slabs under projectile and drop weight impacts", Constr. Build. Mater., 237, 117522. https://doi.org/10.1016/j.conbuildmat.2019.117522
- Muttashar, H.L., Ariffin, M.A.M., Hussein, M.N., Hussin, M.W. and Ishaq, S.B. (2018), "Self-compacting geopolymer concrete with spend garnet as sand replacement", J. Build. Eng., 15, 85-94. https://doi.org/10.1016/j.jobe.2017.10.007
- Naaman, A.E. and Reinhardt, H.W. (2003), "High Performance Fiber Reinforced Cement Composites HPFRCC-4: International RILEM Workshop", Mater. Struct., 36, 710-712. https://doi.org/10.1007/BF02479507
- Naghibdehi, M.G., Mastali, M., Sharbatdar, M.K. and Naghibdehi, M.G. (2014), "Flexural performance of functionally graded RC cross-section with steel and PP fibres", Magaz. Concrete Res., 66(5), 219-233. https://doi.org/10.1680/macr.13.00248
- Okamura, H. and Ouchi, M. (1998), "Self-compacting high performance concrete", Progress Struct. Eng. Mater., 1(4), 378-383. https://doi.org/10.1002/pse.2260010406
- Okamura, H. and Ozawa, K. (1994), "Self-compactable high-performance concrete in Japan", Proceedings of the International Workshop on High-Performance Concrete, ACI SP-159, (P. Zia, ed.), American Concrete Institute (ACI), Farmington Hills, MI, USA, pp. 31-44.
- Oluokun, F.A., Burdette, E.G. and Deatherage, J.H. (1991), "Splitting tensile strength and compressive strength relationships at early ages", ACI Mater. J., 88(2), 115-121.
- Ozawa, K., Maekawa, K. and Okamura, H. (1996), "Self-compacting high-performance concrete", Collected Papers (University of Tokyo: Department of Civil Engineering), 34, 135-149.
- Romualdi, J.P. and Mandel, J.A. (1964), "Tensile strength of concrete affected by uniformly distributed and closely spaced short lengths of wire reinforcement", ACI (American Concrete Institute) Journal Proceedings, 61(6), 657-672. https://doi.org/10.14359/7801
- Sahraoui, M. and Bouziani, T. (2019), "Effect of coarse aggregates and sand contents on workability and static stability of self-compacting concrete", Adv. Concrete Constr., Int. J., 7(2), 97-105. https://doi.org/10.12989/acc.2019.7.2.097
- Salhi, M., Ghrici, M., Li, A. and Bilir, T. (2017), "Effect of curing treatments on the material properties of hardened self-compacting concrete", Adv. Concrete Constr., Int. J., 5(4), 359-375. https://doi.org/10.12989/acc.2017.5.4.359
- Sengel, S., Erol, H., Yilmaz, T. and Anil, O. (2022), "Investigation of the effects of impactor geometry on impact behavior of reinforced concrete slabs", Eng. Struct., 263, 114429. https://doi.org/10.1016/j.engstruct.2022.114429
- Senthil, K., Satyanarayanan, K.S. and Rupali, S. (2016), "Energy absorption of fibrous self compacting reinforced concrete system", Adv. Concrete Constr., Int. J., 4(1), 37-47. https://doi.org/10.12989/acc.2016.4.1.037
- Valizadeh, A., Hamidi, F., Aslani, F. and Shaikh, F.U.A. (2020), "The effect of specimen geometry on the compressive and tensile strengths of self-compacting rubberised concrete containing waste rubber granules", Structures, 27, 1646-1659. https://doi.org/10.1016/j.istruc.2020.07.069
- Vandewalle, L., Nemegeer, D., Balazs, L., Barr, B., Barros, J., Bartos, P., Banthia, N., Criswell, M., Denarie, E., Di Prisco, M., Falkner, H., Gettu, R., Gopalaratnam, V., Groth, P., Hausler, V., Kooiman, A., Kovler, K., Massicotte, B., Mindess, S., Reinhardt, H.-W., Rossi, P., Schaerlaekens, S., Schumacher, P., Schnutgen, B., Shah, S., Skarendahl, A., Stang, H., Stroeven, P., Swamy, R., Tatnall, P., Teutsch, M. and Walraven, J. (2003), "Final recommendation of RILEM TC 162-TDF: Test and design methods for steel fibre reinforced concrete sigma-epsilon-design method", Mater. Struct., 36(262), 560-567. https://www.rilem.net/publication/publication/368?id_papier=7039 https://doi.org/10.1617/14007
- Vivek, S.S. and Dhinakaran, G. (2017), "Fresh and hardened properties of binary blend high strength self compacting concrete", Eng. Sci. Technol., 20(3), 1173-1179. https://doi.org/10.1016/j.jestch.2017.05.003
- Wild, S., Sabir, B.B. and Khatib, J.M. (1995), "Factors influencing strength development of concrete containing silica fume", Cement Concrete Res., 25(7), 1567-1580. https://doi.org/10.1016/0008-8846(95)00150-B.
- Xu, X., Ma, T. and Ning, J. (2019a), "Failure analytical model of reinforced concrete slab under impact loading", Constr. Build. Mater., 223, 679-691. https://doi.org/10.1016/j.conbuildmat.2019.07.008
- Xu, X., Ma, T. and Ning, J. (2019b), "Failure mechanism of reinforced concrete subjected to projectile impact loading", Eng. Fail. Anal., 96, 468-483. https://doi.org/10.1016/j.engfailanal.2018.11.006
- Zheng, J., Shen, F., Gu, X. and Zhang, Q. (2022), "Simulating failure behavior of reinforced concrete T-beam under impact loading by using peridynamics", Int. J. Impact Eng., 165, 104231. https://doi.org/10.1016/j.ijimpeng.2022.104231
- Zhu, W., Gibbs, J.C. and Bartos, P.J.M. (2001), "Uniformity of in situ properties of self-compacting concrete in full-scale structural elements", Cement Concrete Compos., 23(1), 57-64. https://doi.org/10.1016/S0958-9465(00)00053-6