DOI QR코드

DOI QR Code

Effect of length and content of steel fibers on the flexural and impact performance of self-compacting cementitious composite panels

  • Denise-Penelope N. Kontoni (Department of Civil Engineering, School of Engineering, University of the Peloponnese) ;
  • Behnaz Jahangiri (Faculty of Engineering, Lorestan University) ;
  • Ahmad Dalvand (Faculty of Engineering, Lorestan University) ;
  • Mozafar Shokri-Rad (Faculty of Engineering, Lorestan University)
  • Received : 2021.03.28
  • Accepted : 2023.01.19
  • Published : 2023.01.25

Abstract

One of the important problems of concrete placing is the concrete compaction, which can affect the strength, durability and apparent quality of the hardened concrete. Therefore, vibrating operations might be accompanied by much noise and the need for training the involved workers, while inappropriate functioning can result in many problems. One of the most important methods to solve these problems is to utilize self-compacting cementitious composites instead of the normal concrete. Due to their benefits of these new materials, such as high tensile, compressive, and flexural strength, have drawn the researchers' attention to this type of cementitious composite more than ever. In this experimental investigation, six mixing designs were selected as a base to acquire the best mechanical properties. Moreover, forty-eight rectangular composite panels with dimensions of 300 mm × 400 mm and two thickness values of 30 mm and 50 mm were cast and tested to compare the flexural and impact energy absorption. Steel fibers with volume fractions of 0%, 0.5% and 1% and with lengths of 25 mm and 50 mm were imposed in order to prepare the required cement composites. In this research, the composite panels with two thicknesses of 30 mm and 50 mm, classified into 12 different groups, were cast and tested under three-point flexural bending and repeated drop weight impact test, respectively. Also, the examination and comparison of flexural energy absorption with impact energy absorption were one of the other aims of this research. The obtained results showed that the addition of fibers of longer length improved the mechanical properties of specimens. On the other hand, the findings of the flexural and impact test on the self-compacting composite panels indicated a stronger influence of the long-length fibers.

Keywords

References

  1. ACI Committee 318 (2014), Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (318R-14), American Concrete Institute, Farmington Hills, MI, USA.
  2. Afzali-Naniz, O. and Mazloom, M. (2019), "Fracture behavior of self-compacting semi-lightweight concrete containing nanosilica", Adv. Struct. Eng., 22(10), 2264-2277. https://doi.org/10.1177/1369433219837426
  3. Ahmadi, M., Kheyroddin, A., Dalvand, A. and Kioumarsi, M. (2020), "New empirical approach for determining nominal shear capacity of steel fiber reinforced concrete beams", Constr. Build. Mater., 234, p. 117293. https://doi.org/10.1016/j.conbuildmat.2019.117293
  4. Arioglu, N., Girgin, Z.C. and Arioglu, E. (2006), "Evaluation of ratio between splitting tensile strength and compressive strength for concretes up to 120 MPa and its application in strength criterion", ACI Mater. J., 103(1), 18-24.
  5. Aslani, F. and Nejadi, S. (2012), "Bond Behavior of Reinforcement in Conventional and Self-Compacting Concrete", Adv. Struct. Eng., 15(2), 2033-2051. https://doi.org/10.1260/1369-4332.15.12.2033
  6. ASTM C39 / C39M-09a (2009), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International; West Conshohocken, PA, USA. www.astm.org, https://doi.org/10.1520/C0039_C0039M-09A
  7. ASTM C39 / C39M-21 (2021), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, USA. www.astm.org, https://doi.org/10.1520/C0039_C0039M-21
  8. ASTM C496 / C496M-04 (2004), Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International; West Conshohocken, PA, USA. www.astm.org, https://doi.org/10.1520/C0496_C0496M-04
  9. ASTM C496 / C496M-17 (2017), Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International; West Conshohocken, PA, USA. www.astm.org, https://doi.org/10.1520/C0496_C0496M-17
  10. ASTM C1609 / C1609M-05 (2005), Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading), ASTM International; West Conshohocken, PA, USA. www.astm.org, https://doi.org/10.1520/C1609_C1609M-05
  11. ASTM C1609 / C1609M-19 (2019), Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading), ASTM International; West Conshohocken, PA, USA. www.astm.org, https://doi.org/10.1520/C1609_C1609M-19
  12. Banthia, N. and Sappakittipakorn, M. (2007), "Toughness enhancement in steel fiber reinforced concrete through fiber hybridization", Cement Concrete Res., 37(9), 1366-1372. https://doi.org/10.1016/j.cemconres.2007.05.005
  13. Benyamina, S., Menadi, B., Bernard, S.K. and Kenai, S. (2019), "Performance of self-compacting concrete with manufactured crushed sand", Adv. Concrete Constr., Int. J., 7(2), 87-96. https://doi.org/10.12989/acc.2019.7.2.087
  14. Carino, N.J. and Lew, H.S. (1982), "Re-examination of the relation between splitting tensile and compressive strength of normal weight concrete", ACI Mater. J., 79(3), 214-219.
  15. CEB-FIP Model Code for Concrete Structures (1991), Evaluation of the Time Dependent Behaviour of Concrete, Bulletin d'Information No. 199, Comite European du Beton/Federation Internationale de la Precontrainte, Lausanne, Switzerland.
  16. Chan, C., Yu, T. and Zhang, S. (2018), "Compressive behaviour of square fibre-reinforced polymer-concrete-steel hybrid multi-tube concrete columns", Adv. Struct. Eng., 21(8), 1162-1172. https://doi.org/10.1177/1369433217732499
  17. Dalvand, A. and Ahmadi, M. (2021), "Impact failure mechanism and mechanical characteristics of steel fiber reinforced self-compacting cementitious composites containing silica fume", Eng. Sci. Technol., 24(3), 736-748. https://doi.org/10.1016/j.jestch.2020.12.016
  18. Djelloul, O.K., Menadi, B., Wardeh, G. and Kenai, S. (2018), "Performance of self-compacting concrete made with coarse and fine recycled concrete aggregates and ground granulated blast-furnace slag", Adv. Concrete Constr., Int. J., 6(2), 103-121. https://doi.org/10.12989/acc.2018.6.2.103
  19. Facconi, L., Minelli, F. and Plizzari, G. (2016), "Steel fiber reinforced self-compacting concrete thin slabs - Experimental study and verification against Model Code 2010 provisions", Eng. Struct., 122(1), 226-237. https://doi.org/10.1016/j.engstruct.2016.04.030
  20. Gardner, N.J. (1990), "Effect of Temperature on the Early-Age Properties of Type I, Type III, and Type I/Fly Ash Concretes", ACI Materials Journal, 87(1), 68-78.
  21. Huang, B.-T., Wu, J.-Q., Yu, J., Dai, J.-G., Leung, C.K.Y. and Li, V.C. (2021), "Seawater sea-sand engineered/strain-hardening cementitious composites (ECC/SHCC): Assessment and modeling of crack characteristics", Cement Concrete Res., 140, 106292. https://doi.org/10.1016/j.cemconres.2020.106292
  22. Karanth, S.S., Ghorpade, V.G. and Rao, H.S. (2017), "Shear and impact strength of waste plastic fibre reinforced concrete", Adv. Concrete Constr., Int. J., 5(2), 173-182. https://doi.org/10.12989/acc.2017.5.2.173
  23. Karihaloo, B.L. and Wang, J. (1997), "Micromechanical modelling of strain hardening and tension softening in cementitious composites", Computat. Mech., 19, 453-462. https://doi.org/10.1007/s004660050193
  24. Karimipour, A., Ghalehnovi, M., de Brito, J. and Attari, M. (2020), "The effect of polypropylene fibres on the compressive strength, impact and heat resistance of self-compacting concrete", Structures, 25, 72-87. https://doi.org/10.1016/j.istruc.2020.02.022
  25. Kim, S., Jeong, S.Y. and Kang, T.H.K. (2019), "Design of small impact test device for concrete panels subject to high speed collision", Adv. Concrete Constr., Int. J., 7(1), 23-30. https://doi.org/10.12989/acc.2019.7.1.023
  26. Kong, H.-J., Bike, S.G. and Li, V.C. (2003), "Development of a self-consolidating engineered cementitious composite employing electrosteric dispersion/stabilization", Cement Concrete Compos., 25(3), 301-309. https://doi.org/10.1016/S0958-9465(02)00057-4
  27. Lavanya, G. and Jegan, J. (2015), "Evaluation of relationship between split tensile strength and compressive strength for geopolymer concrete of varying grades and molarity", Int. J. Appl. Eng. Res., 10(15), 35523-35527.
  28. Lenka, S. and Panda, K.C. (2017), "Effect of metakaolin on the properties of conventional and self compacting concrete", Adv. Concrete Constr., Int. J., 5(1), 31-48. https://doi.org/10.12989/acc.2017.5.1.31
  29. Lepech, M.D., Li, V.C., Robertson, R.E. and Keoleian, G.A. (2008), "Design of green engineered cementitious composites for improved sustainability", ACI Mater. J., 105(6), 567-575.
  30. Li, V.C. (1993), "From Micromechanics to Structural Engineering - the Design of Cementitous Composites for Civil Engineering Applications", JSCE J. Struct. Mech. Earthq. Eng., 10(2), 37-48. https://doi.org/10.2208/jscej.1993.471_1
  31. Li, V.C. and Yang, E.-H. (2007), "Self Healing in Concrete Materials", In: van der Zwaag, S. (eds), Self Healing Materials, Springer Series in Materials Science, Vol. 100, Springer, Dordrecht, pp. 161-193. https://doi.org/10.1007/978-1-4020-6250-6_8
  32. Liu, Z., Chen, X., Wang, X. and Diao, H. (2022), "Investigation on the dynamic compressive behavior of waste tires rubber-modified self-compacting concrete under multiple impacts loading", J. Cleaner Product., 336, 130289. https://doi.org/10.1016/j.jclepro.2021.130289
  33. Mastali, M., Dalvand, A. and Sattarifard, A. (2017), "The impact resistance and mechanical properties of the reinforced self-compacting concrete incorporating recycled CFRP fiber with different lengths and dosages", Compos. Part B: Eng., 112, 74-92. https://doi.org/10.1016/j.compositesb.2016.12.029
  34. Moghadam, A.S., Omidinasab, F. and Dalvand, A. (2020), "Experimental investigation of (FRSC) cementitious composite functionally graded slabs under projectile and drop weight impacts", Constr. Build. Mater., 237, 117522. https://doi.org/10.1016/j.conbuildmat.2019.117522
  35. Muttashar, H.L., Ariffin, M.A.M., Hussein, M.N., Hussin, M.W. and Ishaq, S.B. (2018), "Self-compacting geopolymer concrete with spend garnet as sand replacement", J. Build. Eng., 15, 85-94. https://doi.org/10.1016/j.jobe.2017.10.007
  36. Naaman, A.E. and Reinhardt, H.W. (2003), "High Performance Fiber Reinforced Cement Composites HPFRCC-4: International RILEM Workshop", Mater. Struct., 36, 710-712. https://doi.org/10.1007/BF02479507
  37. Naghibdehi, M.G., Mastali, M., Sharbatdar, M.K. and Naghibdehi, M.G. (2014), "Flexural performance of functionally graded RC cross-section with steel and PP fibres", Magaz. Concrete Res., 66(5), 219-233. https://doi.org/10.1680/macr.13.00248
  38. Okamura, H. and Ouchi, M. (1998), "Self-compacting high performance concrete", Progress Struct. Eng. Mater., 1(4), 378-383. https://doi.org/10.1002/pse.2260010406
  39. Okamura, H. and Ozawa, K. (1994), "Self-compactable high-performance concrete in Japan", Proceedings of the International Workshop on High-Performance Concrete, ACI SP-159, (P. Zia, ed.), American Concrete Institute (ACI), Farmington Hills, MI, USA, pp. 31-44.
  40. Oluokun, F.A., Burdette, E.G. and Deatherage, J.H. (1991), "Splitting tensile strength and compressive strength relationships at early ages", ACI Mater. J., 88(2), 115-121.
  41. Ozawa, K., Maekawa, K. and Okamura, H. (1996), "Self-compacting high-performance concrete", Collected Papers (University of Tokyo: Department of Civil Engineering), 34, 135-149.
  42. Romualdi, J.P. and Mandel, J.A. (1964), "Tensile strength of concrete affected by uniformly distributed and closely spaced short lengths of wire reinforcement", ACI (American Concrete Institute) Journal Proceedings, 61(6), 657-672. https://doi.org/10.14359/7801
  43. Sahraoui, M. and Bouziani, T. (2019), "Effect of coarse aggregates and sand contents on workability and static stability of self-compacting concrete", Adv. Concrete Constr., Int. J., 7(2), 97-105. https://doi.org/10.12989/acc.2019.7.2.097
  44. Salhi, M., Ghrici, M., Li, A. and Bilir, T. (2017), "Effect of curing treatments on the material properties of hardened self-compacting concrete", Adv. Concrete Constr., Int. J., 5(4), 359-375. https://doi.org/10.12989/acc.2017.5.4.359
  45. Sengel, S., Erol, H., Yilmaz, T. and Anil, O. (2022), "Investigation of the effects of impactor geometry on impact behavior of reinforced concrete slabs", Eng. Struct., 263, 114429. https://doi.org/10.1016/j.engstruct.2022.114429
  46. Senthil, K., Satyanarayanan, K.S. and Rupali, S. (2016), "Energy absorption of fibrous self compacting reinforced concrete system", Adv. Concrete Constr., Int. J., 4(1), 37-47. https://doi.org/10.12989/acc.2016.4.1.037
  47. Valizadeh, A., Hamidi, F., Aslani, F. and Shaikh, F.U.A. (2020), "The effect of specimen geometry on the compressive and tensile strengths of self-compacting rubberised concrete containing waste rubber granules", Structures, 27, 1646-1659. https://doi.org/10.1016/j.istruc.2020.07.069
  48. Vandewalle, L., Nemegeer, D., Balazs, L., Barr, B., Barros, J., Bartos, P., Banthia, N., Criswell, M., Denarie, E., Di Prisco, M., Falkner, H., Gettu, R., Gopalaratnam, V., Groth, P., Hausler, V., Kooiman, A., Kovler, K., Massicotte, B., Mindess, S., Reinhardt, H.-W., Rossi, P., Schaerlaekens, S., Schumacher, P., Schnutgen, B., Shah, S., Skarendahl, A., Stang, H., Stroeven, P., Swamy, R., Tatnall, P., Teutsch, M. and Walraven, J. (2003), "Final recommendation of RILEM TC 162-TDF: Test and design methods for steel fibre reinforced concrete sigma-epsilon-design method", Mater. Struct., 36(262), 560-567. https://www.rilem.net/publication/publication/368?id_papier=7039 https://doi.org/10.1617/14007
  49. Vivek, S.S. and Dhinakaran, G. (2017), "Fresh and hardened properties of binary blend high strength self compacting concrete", Eng. Sci. Technol., 20(3), 1173-1179. https://doi.org/10.1016/j.jestch.2017.05.003
  50. Wild, S., Sabir, B.B. and Khatib, J.M. (1995), "Factors influencing strength development of concrete containing silica fume", Cement Concrete Res., 25(7), 1567-1580. https://doi.org/10.1016/0008-8846(95)00150-B.
  51. Xu, X., Ma, T. and Ning, J. (2019a), "Failure analytical model of reinforced concrete slab under impact loading", Constr. Build. Mater., 223, 679-691. https://doi.org/10.1016/j.conbuildmat.2019.07.008
  52. Xu, X., Ma, T. and Ning, J. (2019b), "Failure mechanism of reinforced concrete subjected to projectile impact loading", Eng. Fail. Anal., 96, 468-483. https://doi.org/10.1016/j.engfailanal.2018.11.006
  53. Zheng, J., Shen, F., Gu, X. and Zhang, Q. (2022), "Simulating failure behavior of reinforced concrete T-beam under impact loading by using peridynamics", Int. J. Impact Eng., 165, 104231. https://doi.org/10.1016/j.ijimpeng.2022.104231
  54. Zhu, W., Gibbs, J.C. and Bartos, P.J.M. (2001), "Uniformity of in situ properties of self-compacting concrete in full-scale structural elements", Cement Concrete Compos., 23(1), 57-64. https://doi.org/10.1016/S0958-9465(00)00053-6