• Title/Summary/Keyword: cement production

Search Result 397, Processing Time 0.023 seconds

Reutilization of waste LCD panel glass as a building material (건축자재로서 폐 LCD 판유리의 재활용)

  • Min, Kyoung-Won;Lee, Hyun-Cheol;Seo, Eui-Young;Lee, Won-Sub
    • Journal of Industrial Technology
    • /
    • v.31 no.A
    • /
    • pp.53-57
    • /
    • 2011
  • Recently due to dramatically increasing demand of liquid crystal display (LCD) panel in IT industry, the used LCD panel glass has been wasted from electronic items, and also panel glass of poor quality during manufacturing process. The wasted LCD panel glass was crushed in the range of 0.42 to 2mm and evaluated for its usefulness as a aggregate in production of cement concrete brick. Cement concrete specimens with various mixing ratios of weathered granite soil, LCD panel glass and cement were cured in wetness for 7 days at $40^{\circ}C$ and then tested for uniaxial comprehensive strength (UCS)(KS F 4004 method). Specimen with a mixing ratio, 1:6:3, of weathered granite, LCD panel glass and cement, respectively, showed the highest average in the UCS test($26.51N/mm^2$). It is much higher than that of commercial brick without glass($17.00N/mm^2$). Conclusively waste LCD panel glass can be reutilized economically as a raw building material of good quality.

  • PDF

A review on the effect of marble waste on properties of green concrete

  • Rachid Djebien;Amel Bouabaz;Yassine Abbas;Yasser N. Ziada
    • Advances in concrete construction
    • /
    • v.15 no.1
    • /
    • pp.63-74
    • /
    • 2023
  • All production and consumption activities produce wastes, which often cause damage to our environment and multiple risks to the human health. The valorization of these wastes in concrete technology is a future solution that will allow finding other construction materials sources, optimizing energy consumption and protecting the environment. Among these wastes, there is the marble waste. Every year, huge amount of marble waste is discarded as dust or aggregates form, in open-air storage areas causing serious problems for the environment and public health. In this context, the incorporation of marble waste as a replacement of ordinary aggregates or cement in concrete composition is actively investigated by researchers. This paper presents a comprehensive review of published studies over the last 20 years, dealing the effect of marble waste on fresh and hardened properties of concrete. Most of the studies carried out have used marble waste as dust with substitution rates between 5 and 20%. Besides the economic and ecological benefits, this review showed that marble waste can improve the physical, mechanical and durability properties of concrete. This improvement depends on the form (dust, fine aggregate or coarse aggregate), substitution method (as cement or aggregates replacement) and substitution rate of marble waste. Additionally, the review results showed that the use of 10-15% of marble waste dust as cement substitution can lead to increase the compressive strength.

The Experimental Study of Inorganic Performanent내s of Fire Resistance Evaluation (무기질계 영구거푸집의 내화성능에 관한 실험적 연구)

  • 김영진;백민수;정근호;김우재;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.495-500
    • /
    • 2002
  • The purpose of this study is to develop and to apply this permanent cement mortar form as one of those system forms to improve existing form's problems. (1) In the fire proof test with combined specimen, the fire proof covering including form section thickness is satisfied with the fire proof criterion. It is considered that form section thickness has no problem (2) The suitable method of normal pressure steam curing for the form's mass production is 4 hours in 65℃ considering production cost, the silica fume admixture is economic.

  • PDF

Estimation of Crystal Production in Microstructure of Mortar Cooated with Siliceous Slurry Coatings (규산질비분말혼합시멘트계도포방수재료를 도포한 몰탈 조직에서의 결정생성 평가)

  • 오상근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.89-92
    • /
    • 1993
  • This paper deals with the effect of siliceous slurry coatings on mortar microstructure under a damp environment. For estimation on effect of siliceous slurry coating, microstructure of coated mortar was observed through SEM. Crystal production in mivrosturcture of coated mortar was periodically increased, and more produced in mortar of high water-cement ratios. And they were generated mainly in mortar ranging from the surface to the inside about 2.5 or 3mm deep.

  • PDF

Production and Quality Control of Hot Weathered Ready-Mixed High Strength Concrete (서중 고강도 레미콘 제조 및 품질관리)

  • 조일호;한정호;방희상;박기청
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.423-428
    • /
    • 1994
  • High strength concrete was placed at the mass concrete slabs, walls, pillars of RC building from August till August. And the construction is going on now. This paper presents mix design, production, quality control and experience with field application of high strength ready-mixed concrete under hot weathered conditions. It is shown to be possible to produce high strength concrete that has 45MPa compressive strength using superplasticizer and cement replaced with 20% fly-ash with appropriate control.

  • PDF

Weatherability of Epoxy Cement Mortars without Hardener (경화제를 첨가하지 않은 에폭시 시멘트 모르타르의 내후성)

  • Jo, Young-Kug
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.801-809
    • /
    • 2006
  • Epoxy resin has widely been used as adhesives and corrosion-resistant paints in the construction industry for many years, since it has desirable properties such as high adhesion and chemical resistance. Until now, in the production of conventional epoxy cement mortars, the use of any hardener has been considered indispensable for the hardening of the epoxy resin. However we have noticed the fact that even without any hardener, the hardening process of the epoxy resin can proceed by the action of hydroxides in cement mortars. As a result the disadvantages of the two-component mixing of the epoxy resin and hardener have been overcome. The purpose of this study is to evaluate the mechanical properties and durability of epoxy cement mortar without a hardener exposed at indoor and outdoor for one year. The epoxy cement mortars without and with a hardener were prepared with various polymer-cement ratios, and tested for weight change, flexural and compressive strengths, water absorption, carbonation depth and pore size distribution. Especially, the basic properties of the epoxy cement mortars without hardener are discussed in comparison with ones with the hardener. From the test results, it is concluded thai the epoxy cement mortars without a hardener exposed at indoor and outdoor for one year have higher strength and better durability than ones with the hardener within the polymer-cement ratios of 10 to 20%.

Analysis of Injection Efficiency for Cement Grouts by Model Test of Permeation in Soil (지반침투모형시험에 의한 시멘트그라우트의 주입성능 분석)

  • Song, Young-Su;Lim, Heui-Dae;Choi, Dong-Nam
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.177-184
    • /
    • 2010
  • When cement grout is used for waterproofing of grounds, important roles are played by fluidity, particle size and bleeding. The most important element which determines their characteristics is the water/cement ratio of grout. Moreover in order to improve the efficiency of soil permeation, micro cement with a smaller average diameter is used in addition to ordinary portland cement. Besides the mixing ratio and cement diameter, the condition of ground is also of fundamental importance in the efficiency of permeation. In order to evaluate grout in terms of permeation ability into ground, we need a field test of grounting, which is cost and time consuming. In this paper we present a laboratory test method in which the suitability and efficiency of grouts are simply and more practically tested. In Korea neither a test standard nor devices are available to simulate grouting in a laboratory. We devised a grout injection equipment in which grouting was reproduced in the same condition with different materials, and suggested a standard for the production of specimens. Our tests revealed that the efficiency of injection increases with the water/cement ratio. We also found that more efficiently injected is the grout with the order of decreasing size; MS8000, micro cement, and ultra fine cements, and colloidal super cement.

Effect of Low-grade Limestone on Raw Mill Grinding and Cement Clinker Sintering (저품위 석회석이 원료밀의 분쇄성과 시멘트 클링커 소성성에 미치는 영향)

  • Yoo, Dong-Woo;Park, Tae-Gyun;Choi, Sang-Min;Lee, Chang-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.20-25
    • /
    • 2021
  • The cement clinker, the main raw material of cement, is manufactured using limestone as the main material. Depending on the quality of limestone, the use of subsidiary materials changes, and has a great influence on the production of cement clinkers. In this study, the effect of CaO content of limestone, a cement clinker material, on Raw Mill grinding and sintering of cement clinker was investigated. The grinding time of the union materials changed in the content of limestone CaO was measured to identify the grinding properties. The raw material combination was cleaned within a range of 1,350-1,500℃. The sintering performance of cement clinker by Burnability index calculation was identified. The lower the grade of limestone, the lower the grinding quality of the raw material combination. The lower the CaO content of limestone, the greater the variation in F-CaO for sintering temperature. The lower the class of limestone, the higher B. I. value was calculated, indicating the lower cement clinker sintering. In addition, the mineral analysis results of cement clinker showed that if the F-CaO value was low due to the increase in sintering temperature, the Belite content decreased and the Alite content increased. In the case of Alite, the ratio of R-type decreased and that of M-type increased as the content of limestone CaO increased.

Effect of Change in Coal Ash Content on Sinterability and Phase Change of Cement Clinker (석탄재의 함량변화가 시멘트 클링커의 소성성 및 상변화에 미치는 영향)

  • Dong-Woo Yoo;Young-Jin Im;Sang-Min Choi;Sung-Ku Kwon;Seok-Je Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.16-24
    • /
    • 2023
  • Coal ash generated from thermal power plants using briquettes contains Si, Al, and Fe components. These components are the main components required for the manufacture of cement clinker. In particular, Al and Fe components form the interstitial phase of cement clinker and have an important effect on the sintering of cement clinker. In this study, a large amount of coal ash was applied as a raw material for cement clinker by content, and the mineral formation process of cement clinker to which coal ash was applied was confirmed by sintering temperature. It was confirmed that the intermediate phase was generated in the sintering temperature range of 1050 ~ 1150 ℃ in the cement clinker to which a large amount of coal ash was applied. As the content of coal ash increased, the production amount of the intermediate phase increased. The phase produced by the addition of coal ash is expected to be converted to calcium silicate phase and interstitial phase and disappear above 1350 ℃. The cement clinker applied with a large amount of coal ash at 1450 ℃ formed well-developed minerals equivalent to the standard cement clinker.

Effects of Crushed Shells on the Physical Properties of Cement Mortar (분쇄패각이 시멘트 모르터의 물성에 미치는 영향)

  • Kim, Ji-Hyun;Chung, Chul-Woo;Lee, Jae-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.1
    • /
    • pp.94-101
    • /
    • 2014
  • Approximately 240,000 tons of waste shells are produced annually in the south and west coast of South Korea. Some of these waste shells (oyster, cockle) are recycled as seeding collector and fertilizer, but most are dumped illegally near the coast. One of the alternative solutions that can economically utilize a large amount of these waste shells is to apply them to the production of construction materials. In this research, the basic physical properties of waste shells such as oyster, cockle, clam, manila clam were investigated, and were used to prepare cement mortar with a 25% replacement ratio of sand. According to the results, the 28 day compressive strength of cement mortar with cockle and manila clam shells was similar to that of plain cement mortar. The compressive strength decreased by about 18% when clam was used. However, the cement mortar with oyster shell showed about a 35% reduction in 28-day compressive strength, and two times the absorption capacity of plain cement mortar. The reduction in compressive strength and the increase in absorption capacity were mostly associated with the porous nature of the oyster shell.