• 제목/요약/키워드: cement powder

Search Result 698, Processing Time 0.027 seconds

Study on the engineering and electricity properties of cement mortar added with waste LCD glass and piezoelectric powders

  • Chang, Shu-Chuan;Wang, Chien-Chih;Wang, Her-Yung
    • Computers and Concrete
    • /
    • 제21권3호
    • /
    • pp.311-319
    • /
    • 2018
  • This study used a volumetric method for design. The control group used waste Liquid Crystal Displayplay (LCD) glass powder to replace cement (0%, 10%, 20%, 30%), and the PZT group used Pd-Zr-Ti piezoelectric (PZT) powder to replace 5% of the fine aggregate to make cement mortar. The engineering and the mechanical and electricity properties were tested; flow, compressive strength, ultrasonic pulse velocity (UPV), water absorption and resistivity (SSD and OD electricity at 50 V and 100 V) were determined; and the correlations were determined by linear regression. The compressive strength of the control group (29.5-31.8 MPa) was higher than that of the PZT group (25.1-29 MPa) by 2.8-4.4 MPa at the curing age of 28 days. A 20% waste LCD glass powder replacement (31.8 MPa) can fill up finer pores and accelerate hydration. The control group had a higher 50 V-SSD resistivity ($1870-3244{\Omega}.cm$), and the PZT group had a lower resistivity ($1419-3013{\Omega}.cm$), meaning that the resistivity increases with the replacement of waste LCD glass powder. This is because the waste LCD glass powder contains 62% $SiO_2$, which is a low dielectric material that is an insulator. Therefore, the resistivity increases with the $SiO_2$ content.

Properties of concrete incorporating sand and cement with waste marble powder

  • Ashish, Deepankar K.;Verma, Surender K.;Kumar, Ravi;Sharma, Nitisha
    • Advances in concrete construction
    • /
    • 제4권2호
    • /
    • pp.145-160
    • /
    • 2016
  • Marble is a metamorphic rock used widely in construction which increases amount of marble powder obtained from it. Marble powder is a waste product obtained from marble during its processing. Marble waste is high in calcium oxide content which is cementing property but it creates many environmental hazards too if left in environment or in water. In this research, partial replacement of cement and sand by waste marble powder (WMP) has been investigated. Seven concrete mixtures were prepared for this investigation by partially replacing cement, sand with WMP at proportions of 0%, 10% and 15% by weight separately and in combined form. To determine compressive strength, flexural strength and split tensile strength of concrete made with waste marble powder, the samples at the curing ages of 7, 28 and 90 days was recorded. Different tests of durability were applied on samples like ultrasonic pulse wave test, absorption and sorptivity. For further investigation all the results were compared and noticed that WMP has shown good results and enhancing mechanical properties of concrete mix on partially replacing with sand and cement in set proportions. Moreover, it will solve the problem of environmental health hazard.

LCA CO2 관점에서의 콘크리트 폐석분의 활용방안 (Utilization of Waste Concrete Powder from the Viewpoint of LCA CO2)

  • 송훈;신현욱;추용식;이종규;박동천
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 추계 학술논문 발표대회
    • /
    • pp.209-210
    • /
    • 2012
  • Cement is an essential material for social infrastructure. Cement production process for cement itself is energy-intensive and requires a large amount of natural resources for fuel and raw materials. This study is to development of recycled cement from waste concrete powder in manufacturing process of recycled aggregate concrete. Recycled cement is low carbon and green growth materials concept for eco friendly construction environment. From the test results, waste concrete powder is same chemical proportion regardless of manufacturing process of recycled aggregate concrete.

  • PDF

Hydrometer의 밀도 값과 혼탁액 온도를 복합한 포틀랜드 시멘트의 분말도 신속 평가 (Quick evaluation for cement powder of synthesize with the hydrometer density value and change temperature)

  • 이재진;한준희;현승용;김영태;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.87-88
    • /
    • 2018
  • The change in the degree of powder in cement is very important because it plays a major role in the reaction in the concrete. In this study, we intend to apply the principle of early estimation of concrete strength using the non-middling method previously conducted to the quality evaluation of cement powder. In other words, it is proposed to analyze the potential of Hydrometer density values and the data of temperature variation in the trust solution to propose a method of acceptance inspection. According to the experimental results, the quick evaluation of the cement distributorship will be possible if the resulting regression results are used : y = 161867.4 x1 + 117.953 x2 - 165437 (R = 0.9158).

  • PDF

저온 소성한 MgO 분말을 혼입한 시멘트 복합체의 기초 물성 (Fundamental Properties of Cement Composites Containing Lightly Burnt MgO Powders)

  • 장봉석;권용길;최슬우;이광명
    • 콘크리트학회논문집
    • /
    • 제23권2호
    • /
    • pp.225-233
    • /
    • 2011
  • 콘크리트는 타설 직후부터 온도 및 수분의 변화로 인한 체적 변화가 일어난다. 특히 초기 재령에서 발생하는 온도 수축과 건조 수축은 콘크리트에 균열을 유발할 수 있으며, 이는 콘크리트 내구성에 큰 영향을 끼친다. 중국에서는 저온에서 소성된 산화마그네슘(MgO) 분말을 시멘트 대체재로 사용한 콘크리트를 구조물에 적용할 경우, 수축에 대한 보상 효과를 얻을 수 있는 것으로 보고된 바 있다. 이 연구에서는 실험을 통하여 저온 소성한 MgO를 혼입한 시멘트 복합체의 다양한 특성을 규명하고자 하였다. 안정성 시험 결과 MgO 분말의 혼입에 따른 이상팽창이 유발되지 않음을 확인하였으며, MgO의 수화생성물 분석을 통해 MgO 분말이 장기 재령에서 수축을 보상하는 것을 확인하였다. 또한 적당한 MgO 분말의 혼입은 시멘트 복합체의 압축강도를 증진시키는 효과가 있었으며, MgO 분말의 혼입률이 높거나 양생 온도가 높을수록 MgO 분말의 팽창성에 따른 수축 보완 효과가 크게 나타났다.

Assessment of compressive strength of cement mortar with glass powder from the early strength

  • Wang, Chien-Chih;Ho, Chun-Ling;Wang, Her-Yung;Tang, Chi
    • Computers and Concrete
    • /
    • 제24권2호
    • /
    • pp.151-158
    • /
    • 2019
  • The sustainable development principle of replacing natural resources with renewable material is an important research topic. In this study, waste LCD (liquid crystal display) glass powder was used to replace cement (0%, 10%, 20% and 30%) through a volumetric method using three water-binder ratios (0.47, 0.59, and 0.71) to make cement mortar. The compressive strength was tested at the ages of 7, 28, 56 and 91 days. The test results show that the compressive strength increases with age but decreases as the water-binder ratio increases. The compressive strength slightly decreases with an increase in the replacement of LCD glass powder at a curing age of 7 days. However, at a curing age of 91 days, the compressive strength is slightly greater than that for the control group (glass powder is 0%). When the water-binder ratios are 0.47, 0.59 and 0.71, the compressive strength of the various replacements increases by 1.38-1.61 times, 1.56-1.80 times and 1.45-2.20 times, respectively, during the aging process from day 7 to day 91. Furthermore, a prediction model of the compressive strength of a cement mortar with waste LCD glass powder was deduced in this study. According to the comparison between the prediction analysis values and test results, the MAPE (mean absolute percentage error) values of the compressive strength are between 2.79% and 5.29%, and less than 10%. Thus, the analytical model established in this study has a good forecasting accuracy. Therefore, the proposed model can be used as a reliable tool for assessing the design strength of cement mortar from early age test results.

용해된 시멘트 분말이 붕어에 미치는 영향 (The Effect of Dissolved Cement Powder on Carassius auratus)

  • 신명자;이종은;서을원
    • 환경생물
    • /
    • 제33권1호
    • /
    • pp.7-18
    • /
    • 2015
  • 본 연구는 시멘트 노출에 따른 어류 조직의 형태 생리적 변화를 분석하여 용해된 시멘트 분말이 어류에 미치는 영향을 조사하고자 하였다. 용해된 시멘트 분말에 노출된 아가미는 일차새변의 두께가 두꺼워지고, 염세포와 점액세포도 두드러지게 활성이 증가되고 있으며, 이차새변의 새엽에서는 상피세포의 증식과 박리 및 곤봉화 현상도 관찰되었다. 신장 조직에서는 보우만 주머니 공간이 넓게 관찰되었고, 표피 조직은 표피층의 두께가 감소하며 진피층의 배열이 불규칙해지는 것으로 관찰되었다. 항산화효소와 LDH의 활성은 조직 및 노출 기간에 따라 활성에 차이가 있는 것으로 나타났다. 표피 조직에서 용해된 시멘트 분말에 의해 발현이 증가되는 단백질은 해당과정과 에너지 대사과정에 관여하는 단백질로 확인되었고 발현이 저하된 단백질들은 근수축에 관여하는 근섬유 구성 단백질로 조사되었다. 이러한 결과로 보아 용해된 시멘트 분말은 붕어 조직의 형태적 변형과 생리적 기능의 약화를 초래하여 어류의 생존에 커다란 위협이 될 요인으로 작용할 수 있을 것으로 사료된다.

시멘트 페이스트의 특성에 미치는 흡수성폴리머의 영향 (Effects of Absorbent Polymer on the Moisture Resistance and Hydration Characteristics of Cement Pastes)

  • 나종균;김창은;이승규
    • 한국세라믹학회지
    • /
    • 제36권5호
    • /
    • pp.539-546
    • /
    • 1999
  • Absorbent polymer-cement composites were fabricated by the semi-powder mixing OPC(ordinary Portland cement) with an absorbent polymer. The effects of absorbent polymer on the mechanical properties and the hydration characteristics were observed and the polymer-cement interaction also discussed. Absorbent polymer-cement composites showed the value of total porosity of 8vol% the value of 28 days flexural strength was up to 280 Kgf/cm2 in the case of absorbent polymer-cement composite at 1 wt% absorbent polymer content and microstructure of absorbent polymer-cement composite has been observed more dense than that of OPC paste. Accordingly the permeability of compositewas improved and so the moisture resistance was also increased. Adding polymer did not retard the hydration of OPC. It was considered from the results of IR(infrared) analysis that the functional group of absorbent polymer would be changed from unidentate to bidentate during by the hydration of cement minerals.

  • PDF

폐콘크리트 미분말을 사용한 압출경화체의 미시구조 특성 (Microstructure Properties of Cement Extruding Solid using Waste Concrete Powder)

  • 유재성;김진만;선정수;최홍범
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 춘계 학술논문 발표대회
    • /
    • pp.55-56
    • /
    • 2016
  • In the recent concrete industry, when producing recycled aggregates, waste concrete powder is by-produced in large quantities; however, since it is not used properly but buried or discarded. This study is to apply the waste concrete powder to a cement extruding panel as filler. Flexural strength and microstructure characteristics of panel is tested in order to improve the economics of the extruding panel. As a results of this study, it was found that extruding panel replacing silica(No.8) as the waste concrete powder totally showed little difference in the strength and satisfied the target flexural strength of 14MPa, comparing with controlled panel. In addition, we can understand that rich Portlandite and Calcite contributed to develop the strength in all curing conditions from XRD pattern.

  • PDF

석회석 미분말이 염소고함유시멘트의 수화반응에 미치는 영향 (Influence of Limestone Powder on the Hydration of Cement Contained much Chloride)

  • 정찬일;이의학;이경희
    • 한국세라믹학회지
    • /
    • 제43권9호
    • /
    • pp.537-543
    • /
    • 2006
  • Length change, hydration heat, setting time and compressive strength of OPC were measured by adding KCl and replacing limestone powder so as to examine the influence of limestone powder on hydration of the OPC contained much chloride. In general, the chloride modified cement was high in heat of hydration, short in its setting time, low in its fluidity and low in its strength at 28 days due to the sudden hydration in its initial stage. As a result of the experiment, it has been demonstrated that heat of hydration, became low as one replaced limestone powder to the chloride modified cement, and the fluidity and shrinkage rate of mortar decreased without change in setting time; furthermore, the compressive strength at 28 days was improved.