• Title/Summary/Keyword: cement mortar and paste

Search Result 153, Processing Time 0.024 seconds

A Study on the Fluidity Retention of Cement Paste Added by Naphthalene Sulfonated Condensate and Polycarboxylic Acid Admixture (나프탈렌술폰산축합물과 폴리카르본산계 혼화제가 첨가된 시멘트 페이스트의 유동성 유지에 관한 연구)

  • 노재성;홍성수;김도수
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.5
    • /
    • pp.189-199
    • /
    • 1995
  • Naphthalene sulfonated condensate has been widely used as a superplasticizer for cement and concrete, but the application was limited due to its large slump loss with elapsed time. To complement this demerit of NSF, polycarboxylic acid copolymer from nlaleic anhydride and acryl~c acid(MA) was synthesized to retain the mobility of cement and concrete, and then mixed with NSF. The physical properties, such as fluidity, fluidityretention and rheology, were measured by applying these admixtures to cement paste as a function of elapsed time. And also compressive strength of mortar was measured with curing time. NIv-l and NM-2 containing 10, 20 wt% of MA respectively had a excellent fluidity and a fluidity- retention. In rheological property, the increases of shear stress and viscosity with elapsed time were delayed with the increasing of shear rate in cornparision with NSF only. The marked slump loss of cement paste could be controlled by these admixture. Also the added ainount of admixture and the ratio of water to cement affected these properties.

The Improvement of Properties of Recycled aggregates using Concrete Waste by Pre-heating Method. (예비가열법에 의한 폐콘크리트 재생골재의 물성개선)

  • 최현수;김효열;최봉철;강병희
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.73.2-79
    • /
    • 2003
  • The purpose of this study is to provide the basic data on the optimum method for interfacial separation for an effective recycle of concrete waste by using the thermal properties of concrete. Therefore, this study is proceeded by dividing the interface of concrete into cement paste and fine aggregates or mortar and coarse aggregate, considering the aspect of recycled cement and aggregate as the recycling use of concrete waste. As results of the experiment, in case of recycle cement, the interfacial separation is easily appeared, but it is shown that the mixed amount of powder included in fine aggregate doesn't greatly decrease. But, in case of recycle coarse aggregate, the effect of interfacial separation by preliminary heating is predominant. Especially, the bonding rate of mortar is the lowest when it is heated 5 times for 120 minutes at $300^{\circ}C$. Hence, it is considered that it will be an excellent effect of quality control when the results of this study is applied to a manufacturing system of recycle coarse aggregate which is about to put into practical use.

  • PDF

Resistance to a pH Fall with Water-Cement Ratio in Cementitous Material (물-시멘트비에 따른 시멘트계 재료의 pH 저하 저항성 평가)

  • Jung, Min-Sun;Ann, Ki-Yong;Song, Ha-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.325-326
    • /
    • 2009
  • The present study concerns the acid neutralization capacity (ANC) of cement paste, mortar and concrete depending on a free water-cement ratio. The ANC of paste at 30%, 40% and 50% of water-cement ratio was measured and simultaneously the effect of aggregate on the ANC was evaluated. It was found that an increase in the acid concentration resulted in a decrease in the pH of the suspension, in particular, at 10 in the pH, a sharp decrease was observed. The ANC showed some peak resistances to acid at particular pH values.

  • PDF

An Experimental study on the Fundamental Properties of Restorative Mortar Spread with Liquefied Antibiotics for Repair of Sewer Concrete (액상 항균제를 도포한 단면복구용 모르타르의 기초물성에 관한 실험적 연구)

  • Lee Dong-Heck;Jang Jae Bong;Cho Bong-Suk;Kim Jae-Hwan;Lee Byoung-Ky;Kim Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.305-308
    • /
    • 2005
  • The sulfuric acid may react with the hardened cement paste and originate expansive products which can induce swelling and disaggregation of concrete. The purpose of this study is to estimate the antibacterial performance of antibiotics and the effect of absorbed condition of restorative mortar, the number of coating times and coating contents with antibiotic on the fundamental properties of restorative mortar spead with antibiotics. Also, testing items such as bonding strength, abrasion contents, contents of water absorption, contents of air permeability was tested to estimate the fundamental properties in this study. In results, the novellus bacillus inhabiting in sewer concrete structures was restrained by antibiotics developed in this study. And bonding strength of restorative mortar spread with antibiotics was similla to that of plain mortar. But, resistance to abrasion, water absorption and air permeability of restorative mortar spread with antibiotics was superior to that of plain mortar.

  • PDF

Effect of γ-C2S Addition on the Properties of GGBFS Containing Mortar in Accelerated Carbonation Curing (가속 탄화 조건에서 γ-C2S 첨가가 모르타르 함유 GGBFS의 특성에 미치는 영향)

  • Tran, Duc Thanh;Lee, Han-seung;Singh, Jitendra Kumar
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.33-34
    • /
    • 2020
  • 𝛾-dicalcium silicate (𝛾-C2S) is characterized by its strong carbonation reactivity and has the prospect to be utilized as a building material with the added benefit of CO2 capture. This paper aims to point out the impact of 𝛾-C2S on the microstructure characteristics and mechanical properties of GGBFS paste, and mortar samples. The compressive strength of 𝛾-C2S added GGBFS cement mortar is higher compared to without 𝛾-C2S in accelerated carbonation (AC) up to 14 days of curing but once the curing duration is increased, there is no significant improvement in compressive strength. This study suggests that 𝛾-C2S can capture the atmospheric CO2 (mostly generated from cement and metallurgy industries) and utilized in construction.

  • PDF

A Study on the Strength Property of Recycled Fine Aggregate (Wet Type) Mortar with Blast Furnace Slag (고로슬래그를 사용한 습식 순환 잔골재 모르타르의 강도 특성에 관한 연구)

  • Shim, Jong-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.153-160
    • /
    • 2010
  • This study aims to obtain technical data for improvement of utilization of Blast Furnace Slag(BFS), recycled aggregate in the future by complementing fundamental problems of BFS such as manifestation of initial strength and excessive alkali quantity as well as weakness of recycled fine aggregate through manufacturing of recycled fine aggregate mortar using BFS. The recycled aggregate includes the cement paste hardened as the surface and the type of the aggregate, which contains plenty of calcium hydroxide($Ca(OH)_2$) as well as the unhydrated cement. Accordingly, the objectives of this study are to inspect the manufacturing the recycled fine aggregate mortar used with blast furnace slag, to consider the effects of the recycled aggregate on the strength development of ground granulated blast furnace slag, and then to acquire the technical data to take into consideration the further usages of the recycled aggregate and blast furnace slag. In eluted ions from recycled aggregate, it showed that there were natrium($Na^+$) and kalium($K^+$), expected to be flown out of unhydrated cement, as well as calcium hydroxide($Ca(OH)_2$). Application of this water to mix cement mortar with ground granulated blast furnace slag was observed to expedite hydration as calcium hydroxide($Ca(OH)_2$) and unhydrated cement component were expressed to give stimuli effects on ground granulated blast furnace slag. The results of the experiment show that the recycled aggregate mixed with blast furnace slag has comparatively higher hydration activity in 7 day than the mortar not mixed with one in 3 day mortar does, causing the calcium hydroxide in the recycled fine aggregate to work on as a stimulus to the hydration of ground granulated blast furnace slag.

Water Repellent Characteristics According to the Surface Properties of Cement Mortar Mixed with Water-soluble Water Wepellent (표면 성상에 따른 수용성 발수제 혼입 시멘트 모르타르의 발수특성)

  • Kang, Suk-Pyo;Kang, Hye-Ju;Hong, Seong-Uk;Yang, Seung-Hyeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.42-49
    • /
    • 2020
  • This paper is a basic study to improve durability by imparting hydrophobicity to the surface and sphere of cement-based materials. A cement mortar to which a silane/siloxane-based mixed water repellent was added was prepared, and its initial hydration performance, flow performance, and compressive strength were measured. In addition, after the surface was abraded, the water contact angle and water absorption were measured. The flow of cement mortar to which the water repellent was added was found to decrease up to 1.5% in the addition amount of the water repellent agent, and increased at 3.0% in the addition amount. It was found that the setting time of the cement paste was delayed in both the initial setting and the termination when the water repellent was added. It was found that the compressive strength decreased from 3.0% of the maximum added amount of the water repellent to a maximum of 30%. The contact angle was found to increase when the water repellent was added to the cement mortar, and the contact angle after surface polishing was found to be larger than before surface polishing. The addition of the water repellent showed hydrophobicity not only on the surface but also on the surface and cross section damaged by polishing. The water absorption rate was found to decrease when the water repellent was added to the cement mortar, and the water absorption rate after surface polishing was found to be greater than before surface polishing.

Influence of Drying Methods on Measurement of Hydration Degree of Hydraulic Inorganic Materials: 1) Ordinary Portland cement paste and mortar (수경성 무기재료의 수화도 측정에 대한 건조방법의 영향: 1) 보통 포틀랜드 시멘트 페이스트 및 모르타르)

  • Lee, Hyo Kyoung;Kim, Hyeong-Ki
    • Resources Recycling
    • /
    • v.27 no.1
    • /
    • pp.92-105
    • /
    • 2018
  • The present study was carried out to find a suitable drying method for measuring non-evaporable water contents of various hydraulic inorganic materials. In Part 1 of the paper, the case Ordinary Portland cement is discussed. Various drying methods including vacuum and oven drying, and an ignition, were used for the OPC paste and mortar having different w/c. The sole vacuum drying under room temperature led a fluctuation on measurement of hydration degree, while the sole oven drying also yielded unwanted hydration promotion at the early age. A combination of the vacuum and oven drying was considered as a suitable drying method for the OPC case.

Effect of Blast Furnace Slag on Rheological Properties of Fresh Mortar (고로슬래그미분말의 치환율 변화에 따른 굳지않은 모르타르의 레올로지 특성 검토)

  • Lim, Ji-Hee;Lee, Gun-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.4
    • /
    • pp.285-291
    • /
    • 2014
  • Partial replacement of cement with blast furnace slag has many advantages such as the reduction of construction fee, the decrease of hydration heat and the increase of long-term strength. Hence, slag is widely used in practice. This study investigates the effect of slag on the rheological properties of cement paste and mortar. Three different types of slag (BS1, BS2 and BS3) with five different contents (0, 20, 40, 60 and 80 wt.%) were used to replace the cement. Each type of slag has different fineness. Water to binder ratio was 0.5. Test results showed that the partial replacement of BS1 and BS2 decreased flow and increased O-lot flow time, whereas that of BS3 caused an opposite effect, i.e., increased flow and decreased O-lot flow time. It was found that there was a good corelation between the values of yield stress and flow.

Effect of fineness of high lime fly ash on pozzolanic reactivity and ASR mitigation

  • Afshinnia, Kaveh;Rangaraju, Prasada R.
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.197-204
    • /
    • 2017
  • Typically, high lime fly ash (Class C) has been characterized as a fly ash, which at lower replacement levels is not as effective as the low lime (Class F) fly ash, in mitigating alkali-silica reaction (ASR) in portland cement concrete. The influence of fineness of Class C, obtained by grinding virgin fly ash into finer particles, on its pozzolanic reactivity and ASR mitigation performance was investigated in this study. In order to assess the pozzolanic reactivity of mortar mixtures containing virgin or ground fly ashes, the strength activity index (SAI) test and thermo-gravimetric analysis (TGA) were conducted on the mortar cubes and paste samples, respectively, containing virgin fly ash or two ground fly ashes. In addition, to evaluate any improvement in the ASR mitigation of ground fly ashes compared to that of the virgin fly ash, the accelerated mortar bar test (AMBT) was conducted on the mortar mixtures containing different dosages of either virgin or ground fly ashes. In all tests crushed glass aggregate was used as a highly reactive aggregate. Results from this study showed that the finest fly ash (i.e., with an average particle size of 3.1 microns) could increase the flow ability along with the pozzolanic reactivity of the mortar mixture. However, results from this study suggested that the fineness of high lime fly ash does not seem to have any significant effect on ASR mitigation.