• Title/Summary/Keyword: cement hardening

Search Result 335, Processing Time 0.03 seconds

Experimental Study on the Early Strength Development Mechanism of Cement Paste Using Hardening Accelerator and High-Early-Strength Cement (경화촉진제와 조강시멘트를 사용한 시멘트 페이스트의 조기강도 발현 메커니즘에 관한 실험적 연구)

  • Min, Tae-Beom;Cho, In-Sung;Lee, Han-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.84-92
    • /
    • 2014
  • The purpose of study is to analyze mechanism with early high portland cement and hardening accelerator. As the result, it was concluded that hardening accelerator makes accelerates appearance of $Ca(OH)_2$ through experiment using TG-DTA when it hydrates with cement. On the result of compressive strength, as increasing the amount of hardening accelerator used, early compressive strength was improved. Also, as a result of hydration heat, hardening accelerator accelerates hydration of $C_3S$ that is cement's component. On the result of XRD's analyzation, hydration product for each age could be check and it was shown that as increasing the amount of hardening accelerator used, peak point of hydration product was recorded high. As the result of SEM, appearance of C-S-H was shown as the amount of $Ca(OH)_2$'s appearance and each age according to additive contents of hardening accelerator. Therefore hardening accelerator used on this study is effective on getting early compressive strength.

The Improvement of Surface Layer Using Cement-hardening Agents in Dredged and Reclaimed Marine Clay (준설매립된 해성점성토에서 시멘트계 고화재를 이용한 표층개량)

  • NAM JUNG-MAN;YUN JUNG-MANN
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.4 s.59
    • /
    • pp.46-51
    • /
    • 2004
  • The surface layer in dredged and reclaimed marine clay is improved by mixing of shallow soils and hardening agents, which is made of cement, containing some other special admixtures. Tests in both laboratory and field settings are performed to investigate the improvement effect and strength properties of cement-stabilized soils. The test results show that the hardening agent sufficiently improves the soil properties of the surface layer, while increasing the load-carrying capacity. The strength of cement-stabilized soils depends, primarily, on water-to-cement ratio and curing temperature. That is, the higher curing temperature and the longer curing time, the higher the strength in cement-stabilized soils. The high ratio of water-ta-cement results in a lower strength.

Manufacture of CO2 Reactive Hardening Cement Using Waste Concrete Powder (폐콘크리트 미분말을 활용한 이산화탄소 반응경화 시멘트 제조)

  • Lee, hyang-Sun;Song, Hun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.75-76
    • /
    • 2023
  • In the cement industry, various research initiatives are underway to achieve carbon neutrality. Mineral carbonation is a technology that converts carbon dioxide into minerals for storage, and CO2 reactive hardening cement is a type of cement that incorporates mineral carbonation technology. In this study, we aimed to manufacture CO2 reactive hardening cement for reducing carbon emissions in the cement industry by utilizing waste concrete powder generated in the construction sector.

  • PDF

Development of early strength type hardening Agent for Surface Soil Stabilization Method (연약지반 표층혼합처리를 위한 조기강도 발현형 고화재의 개발)

  • Ki, Tae-Kyoung;Kim, Ki-Hoon;Lee, Byung-Ki;Kwon, O-Bong;Kim, Kyoung-Min;Park, Sang-Joon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.80-81
    • /
    • 2013
  • There is the increasing number of constructing soil or structure on the soft ground during public works. Usually cement or slag cement has been the traditional material for surface soil stabilization method. Recently, early strength development properties of hardening agent is required for driving abilities of execution equipment and shortening of the construction time. Therefore, the purpose of this study is to develop the early compressive strength hardening agent for surface soil stabilization. The study was confirmed performance and availability of hardening agent using early strength type cement and industrial by-product minerals through early strength development properties in accordance with water cement ratio, content of hardening agent for soft soil.

  • PDF

On the Rapid Hardening Cement (I) (초속경시멘트 제조에 관한 연구 (제1보 시멘트 제조))

  • 한기성;최상흘;한상목;서일영
    • Journal of the Korean Ceramic Society
    • /
    • v.12 no.2
    • /
    • pp.21-25
    • /
    • 1975
  • As the major alumina source, domestic alunite was applied to synthesize the clinker for rapid hardening cement. The main minerals of the clinker were found to be C3S, C11A7-CaF2 and some C4AF by means of chemical treatment, x-ray diffraction analysis and microscopic observation. Rapid hardening cement was made of the clinker by adding suitable amount of hemi-hydrite and anhydrite. The setting time of the cement was regulated with citric acid as setter.

  • PDF

A Case Study on Retarded Hardening of concrete Used Imported Cement (외국산시멘트 사용 콘크리트의 경화불량 원인에 대한 사례연구)

  • 이양수;김남호;김원기;정재동
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.23-28
    • /
    • 1992
  • In recent years, due to the construction boom the demand of cement is increasing suddenly and the use of imported cement is inevitable. But, because the quality of imported cement varies quite a lot, many problems have been encountered in construction fields. These problems include hardening retardation, lower early strength and crack of concrete. The object of this study is to explain causes for hardening retardation from a construction field case and propose a solution

  • PDF

Strength Characteristics of Epoxy Cement Mortar without Hardening Agent (경화제를 사용하지 않은 에폭시 시멘트 모르타르의 압축강도 특성에 관한 연구)

  • Park, Young-Shik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.4
    • /
    • pp.207-211
    • /
    • 2007
  • The durable lifetime of RC structures is shortened by various reasons, which are the generation of cracks in construction and service term, the exterior deterioration according to climatic condition, the surface damage due to chloride attack and the corrosion of reinforced bars. The durability of concrete structures is nevertheless able to be increased by the method and the material of reinforcement and repair. The epoxy resin is widely used for reinforment and repair of concrete because of the superiority in mechanical property, adhesive property, abrasion resistance, impact resistance and chemical resistance. The epoxy cement mortar with hardening agent has a lot of disadvantages that are troublesome mixing work, weakened weatherability and high cost for hardening agent. In this study, the mix proportion of mortar is presented just only with epoxy resin and some admixtures, and the test result of mortar without hardening agent shows the higher strength than the mortar with hardening agent. In the mix proportion, the weight of epoxy resin must be less than 15% of the unit weight of cement, and 10% of unit weight of cement is adequate for the weight of admixtures.

  • PDF

Durability of Ultrarapid-Hardening Polymer-Modified Mortar (초속경 폴리머 시멘트 모르터의 내구성)

  • 이윤수;주명기;정인수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.153-158
    • /
    • 2001
  • The effects of polymer-cement ratio and shrinkage-reducing agent content on the durability characteristics of ultrarapid-hardening polymer-modified mortars using redispersible polymer powder are examined. As a result, the flexural and tensile strengths of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder tend to increase with increasing polymer-cement ratio, and tend to decrease with increasing shrinkage-reducing agent content. However, the compressive strength of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder decrease with increasing polymer-cement ratio and shrinkage-reducing agent content. And, water absorption and mass change of chemicals resistance of ultrarapid-hardening polymer-modified mortars using redispersible polymer powder tend to decrease with increasing polymer-cement ratio.

  • PDF

Study on the Strength Development of cement paste using High-Early-Strength Cement and Hardening Accelerator (조강시멘트와 경화촉진제가 압축강도에 미치는 영향에 대한 실험적 연구)

  • Min, Tae-Beom;Jo, In-Seong;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.56-58
    • /
    • 2013
  • In order to develop concrete generating compressive strength of 15MPa~30MPa aging for 6~12 hours in the room temperature curing, Hardening accelerator containing Ca2+ mixed with rapid hardening portland cement containing C3S in quantity. The result was that the more addictive contents of Hardening accelerator is, the more greatly early compressive strength was improved. That s because the composition of Ca(OH)2 was mass-produced at early-ages.

  • PDF

Rheological Properties of Super Early Hardening Cement Paste Using Set Controlling Agent (응결조절제를 첨가한 초속경 시멘트 페이스트의 유동 특성)

  • Yang Seung-Kyu;Um Tai-Sun;Lee Jong-Ryul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.413-416
    • /
    • 2005
  • The super early hardening cement is widely used for reducing construction period. But there are some problems with handling the cement because the loss of workability is so big to control. In this study, the fluidity properties of super early hardening cement paste was evaluated at early age of hydration by using gel-time determination method. 4 types of set controlling agent were selected and combinations of them were used for gel-time test. As a result, the gel-time of super early hardening cement paste was extended up to 20 minutes by using the combinations of several types set controlling agent.

  • PDF