• Title/Summary/Keyword: cement composition

Search Result 227, Processing Time 0.028 seconds

Effect of Curing Solution and Pre-Rust Process on Rebar Corrosion in the Cement Composite (시멘트 복합체 내부 철근 부식에 양생 용액과 철근 사전 부식이 미치는 영향)

  • Du, Rujun;Jang, Indong;Lee, Hyerin;Yi, Chongku
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.1-8
    • /
    • 2022
  • The corrosion of reinforcement is the main reason for the performance degradation of concrete structures. The pre-rusted parts of rebar in concrete structures are vulnerable to the corrosion, especially if the structure is exposed to wet or chlorinated environments. In this study, effects of different curing solution on corrosion behavior of the pre-rusted rebars in the cement composites were investigated. HCl(3%) and CaCl2(10%) solution were utilized to accelerate the pre-rust of the rebar, and each pre-rust condition rebar including reference (RE) were placed in mortar cylinder. Three kinds of samples then were cured in CaCl2 (3%) solution and tap water respectively for 120 days. Electrochemical polarization and half-cell potential measurement were used to monitor the influence of curing water on the corrosion behavior of pre-rusted steel bar in cement composite. The surface morphology and composition of corroded steel bar were analyzed by scanning electron microscope and energy dispersive X-ray diffraction. The results show that the corrosion rates of pre-rusted samples in both curing water are higher than that of non-pre-rusted samples. The corrosion rates of RE, CaCl2 and HCl pre-rusted samples in salt water were 8.14, 4.48, 13.81 times higher than those in tap water respectively, on the 120th day.

Component and Phase Analysis of Calcium Silicate Cement Clinker by Raw Materials Mix Design (원료 배합에 따른 칼슘 실리케이트 시멘트 클링커의 성분 및 상 분석)

  • Lee, Hyang-Sun;Song, Hun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.3
    • /
    • pp.251-258
    • /
    • 2022
  • In the cement industry, in order to reduce CO2 emissions, technology for raw materials substitution and conversion, technology for improving process efficiency of utilizing low-carbon new heat sources, and technology for collecting and recycling process-generated CO2 are being developed. In this study, we conducted a basic experiment to contribute to the development of CSC that can store CO2 as carbonate minerals among process-generated CO2 capture and recycling technologies. Three types of CSC clinker with different SiO2/(CaO+SiO2) molar ratios were prepared with the clinker raw material formulation, and the characteristics of the clinker were analyzed. As a result of analysis and observation of CSC clinker, wollastonite and rankinite were formed. In addition, as a result of the carbonation test of the CSC paste, it was confirmed that calcite was produced as a carbonation product. The lower the SiO2/(CaO+SiO2) molar ratio in the CSC clinker chemical composition, the lower the wollastonite production amount, and the higher the rankinite production amount. And the amount of calcite production increased with the progress of carbonation of the CSC paste specimen. It is judged that rankinite is more reactive in mineralizing CO2 than wollastonite.

포항분지에 대한 석유지질학적 연구

  • 김기현;김재호;김상석;박동배;이용일
    • 한국석유지질학회:학술대회논문집
    • /
    • spring
    • /
    • pp.48-55
    • /
    • 1998
  • The Pohang Basin is located in Pohang City and adjacent coastal areas in the southeastern Korea. It has a sequence of 900 meters of Neogene marine sediments (Yeonil Group) while offshore basins in the East Sea, e.g., the Ulleng basin, is over 10 Km in thickness. An understanding of the marine Yeonil Group in the Pohang Basin may provide insights into the hydrocarbon potential of the offshore East Sea regions. Heulandite, smectite, dolomite, kaolinite and opal-CT are commonly found as diagenetic minerals in the Yeonil Group. Among these minerals, heulandite occurs as a main cement only in sandstones consisting of volcanic matrix, Smectite composition and diagenetic mineral facies such as heulandite and opal-CT may reflect that the Yeonil Group has undergone shallow burial, temperatures below about 60 degrees. This suggest that sandstones have experiened weak diagenetic alteration. In order to reconstruct the thermal history of the basin, apatite fission-track analysis was carried out. Aapparent apatite fission-track ages (AFTAs) exhibit a broader range of ages from 238 Ma to 27 Ma with mean track lengths in the range of $15.24\pm8.0$ micrometers, indicating that these samples had undergone significant predepositional thermal alteration. The Triassic to Cretaceous AFTAs seem In represent the timing of cooling of their sedimentary sources. Late Cretaceous mean AFTA $(79.0\pm8.0 Ma)$ on the Neogene Yeonil Group indicates that the Yeonil Group had not been buried deeper than 2km since its deposition. The organic matters of. the Pohang Basin remain in the immature stage of thermal evolution because burial depth and temperature were not sufficient enough for maturation even in the deep section of the basin.

  • PDF

A Study on the Optimization of Nucleation and Crystal Growth in Diopside-Devitrite System (투휘석-Devitrite계 복합용융체의 핵생성 및 결정성장의 최적화에 관한 연구)

  • Ahn, Young-Pil;Oh, Bong-Inn;Choi, Long
    • Journal of the Korean Ceramic Society
    • /
    • v.16 no.3
    • /
    • pp.135-141
    • /
    • 1979
  • This study seeks to find optimum conditions for the heating schedule of the Diopside-Devitrite system, to find the amounts and the kinds of nucleus which effect the crystal growth and forming nucleus. Generally, crystallization in the glass depends on the number of nucleus growing in the internal system and the rate of crystal growth. In order to obtain homogeneous polystalline phae, Diopside as MgO source and $ZrO_2$.$P_2O_5$, $TiO_2$, NaF, $CaF_2$ as nucleating agents were added to the $Na_2O$.CaO.$6SiO_2$ glass. The results obtained were Summarized as follows. 1) Optimum Batch Composition of base glass is 76.82 wt.% $SiO_2$, 5.84 wt.% CaO, 4.54 wt.% MgO and 9.80 wt.% $Na_2O$. 2) Best heating schedule.140$0^{\circ}C$(Melting)coolinglongrightarrow95$0^{\circ}C$reheatinglongrightarrow$1100^{\circ}C$coolinglongrightarrowRoom Temp. 3) The optimum amounts of $ZrO_2$.$P_2O_5$, $TiO_2$ and $CaF_2$ are 3wt.% and that of NaF is 4 wt.% as a nucleating agents.

  • PDF

Prediction of chloride ingress into saturated concrete on the basis of a multi-species model by numerical calculations

  • Nguyen, T.Q.;Baroghel-Bouny, V.;Dangla, P.
    • Computers and Concrete
    • /
    • v.3 no.6
    • /
    • pp.401-422
    • /
    • 2006
  • A multi-species model based on the Nernst-Planck equation has been developed by using a finite volume method. The model makes it possible to simulate transport due to an electrical field or by diffusion and to predict chloride penetration through water saturated concrete. The model is used in this paper to assess and analyse chloride diffusion coefficients and chloride binding isotherms. The experimental assessment of the effective chloride diffusion coefficient consists in measuring the chloride penetration depth by using a colorimetric method. The effective diffusion coefficient determined numerically allows to correctly reproduce the chloride penetration depth measured experimentally. Then, a new approach for the determination of chloride binding, based on non-steady state diffusion tests, is proposed. The binding isotherm is identified by a numerical inverse method from a single experimental total chloride concentration profile obtained at a given exposure time and from Freundlich's formula. In order to determine the initial pore solution composition (required as initial conditions for the model), the method of Taylor that describes the release of alkalis from cement and alkali sorption by the hydration products is used here. Finally, with these input data, prediction of total and water-soluble chloride concentration profiles has been performed. The method is validated by comparing the results of numerical simulations to experimental results obtained on various types of concretes and under different exposure conditions.

Thermal Property of Geopolymer Ceramics Based on Fly Ash-Blast Furnace Slag (플라이애시-고로슬래그 기반 지오폴리머 세라믹스의 열적특성)

  • Kim, Jin-Ho;Nam, In-Tak;Park, Hyun;Kim, Kyung-Nam
    • Korean Journal of Materials Research
    • /
    • v.26 no.10
    • /
    • pp.521-527
    • /
    • 2016
  • Geopolymers have many advantages over Portland cement, including energy efficiency, reduced greenhouse gas emissions, high strength at early age and improved thermal resistance. Alkali activated geopolymers made from waste materials such as fly ash or blast furnace slag are particularly advantageous because of their environmental sustainability and low cost. However, their durability and functionality remain subjects for further study. Geopolymer materials can be used in various applications such as fire and heat resistant fiber composites, sealants, concretes, ceramics, etc., depending on the chemical composition of the source materials and the activators. In this study, we investigated the thermal properties and microstructure of fly ash and blast furnace slag based geopolymers in order to develop eco-friendly construction materials with excellent energy efficiency, sound insulation properties and good heat resistance. With different curing times, specimens of various compositions were investigated in terms of compressive strength, X-ray diffraction, thermal property and microstructure. In addition, we investigated changes in X-ray diffraction and microstructure for geopolymers exposed to $1,000^{\circ}C$ heat.

The mold form coating material research for the exposure concrete surface control (노출콘크리트 표면처리를 위한 거푸집 코팅재료 연구)

  • Lee, Young-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.5
    • /
    • pp.137-143
    • /
    • 2010
  • This research is a comparative analysis of the surface gloss of concrete depending on the coating material added to the cast, and includes analyses of the surface gloss of specimens made of cement mortar, with and without the addition of superplasticizer. In terms of coating material, the 7th material, which is part of a liquid packaging material, was shown to have the highest gloss, and was followed by the 3rd material, which uses transparent film. As the level of gloss is shown to vary depending on the material used for the coating film, it can be interpreted that the surface gloss can differ depending on surface particles and chemical composition factors. To make a concrete surface smooth, it is more effective to use a coating material with impermeability and a highly dense surface.

Optimal Mix Design Model of Recycled Aggregate Concrete for Artificial fishing Reefs (인공어초용 재생골재 콘크리트의 최적 배합설계 모델)

  • 홍종현;김문훈;우광성;고성현
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.53-62
    • /
    • 2004
  • The Purpose of this study is to recycle the waste concrete, which is generated in huge quantities, from construction works. in order to achieve this goal, it is important to determine the compressive strength, workability, slump, and ultrasonic velocity of recycled aggregate concrete. Thus, several experiment parameters are considered, such as water-cement ratios, sand percentage, and fine aggregate composition ratios, in order to apply the recycled aggregate concrete to pre-cast artificial fishing reefs. From the results, it has been shown that the proper mix designs for reef concrete are W/C=45%, S/a=50%, SR50:SN50 in recycled sand and natural sand mix combination case, W/C=45%, S/a=50%, SC50:SN50 in crushed sand and natural sand mix combination case, W/C=45%, S/a=50%, SR50:SC50 in recycled sand and crushd sand mix combination case. Also, this study shows that the shape and surface roughness of fine aggregate particles have an effect on the strength, slump, ultrasonic velocity of tested concrete, and the compressive strength ratios of 7days' and 90days' curing ages of recycled aggregate concrete are about 70% and 110% of 28days' curing age.

The sound insulation performance of eco-friendly loess brick wall (친환경 황토벽체의 차음성능 평가에 관한 연구)

  • Lee, Tai-Gang;Kim, Yul;Song, Kook-Gon;Kim, Sun-Woo
    • KIEAE Journal
    • /
    • v.9 no.6
    • /
    • pp.13-18
    • /
    • 2009
  • Korean traditional houses have been developed in harmony with natural environment and comfortable indoor condition by using the natural resources including building layout, space composition and materials. Originally Korea traditional architectures have used wood lintel constructions and loess walls through the many years. Theses loess have many strength such as highly heat capacity, controling of humidity, a deodorant than any other materials. Nowaday it is recommended to use exterior and interior walls in loess wall to meet the eco-friendly materials to improve our residental environmental. Thus this study aims to research the sound insulation performance of traditional loess brick wall varied with thickness, thermal insulation materials and cavity wall. The sound insulation performance of these loess walls are compared with other masonry wall's and sound insulation performance of th walls were tested in anechoic laboratory to measure the sound transmission loss of these walls. The loess brick wall with 75mm thickness of cavity is shown the sound insulation performance with Rw 57 which is nearly same performances of 1B brick wall and cement 8' block wall, The improving effect of insulation materials is shown in the high frequency bandwidth. Especially, there is improving as much as 11 dB using the extruded poly stylene form(75mm) and poly ethylene film(0.7mm).

Quality assessment of high performance concrete using digitized image elements

  • Peng, Sheng-Szu;Wang, Edward H.;Wang, Her-Yung;Chou, Yu-Te
    • Computers and Concrete
    • /
    • v.10 no.4
    • /
    • pp.409-417
    • /
    • 2012
  • The quality of high performance concrete largely depends on water cement ratio, porosity, material composition and mix methods. The uniformity of color, texture and compressive strengths are quality indicators commonly used to assess the overall characteristics of concrete mixes. The homogeneity and share of coarse aggregates play a key role in concrete quality and must be analyzed in a microscopic point of view. This research studies the quality of high performance concrete by taking drilled cores in both horizontal and vertical directions from a 1.0 $m^3$ specimen. The coarse aggregate, expressed in digitized $100{\times}116$ dpi resolution images are processed based on brightness in colors through commercial software converted into text files. With the image converting to text format, the share of coarse aggregate is quantified leading to a satisfactory assessment of homogeneity - a quality index of high performance concrete. The compressive strengths of concrete and the shares of coarse aggregate of the samples are also compared in this research study to illustrate its correlation in concrete quality. It is concluded that a higher homogeneity of aggregate exists in the vertical plane than that of the horizontal planes of the high performance concrete. In addition, the concrete specimen showing denser particle packing has relatively higher compressive strengths. The research methodology provides an easy-to-use, direct measurement of high performance concrete when conducting quality assessment in the construction site.