• 제목/요약/키워드: cellulase gene

검색결과 138건 처리시간 0.031초

Molecular Characterization of a ${\beta}$-1,4-Endoglucanase Gene from Bacillus subtilis H12

  • Oh, Jin-Hwan;Cha, Jeong-Ah;Yoon, Min-Ho
    • Applied Biological Chemistry
    • /
    • 제51권4호
    • /
    • pp.299-304
    • /
    • 2008
  • A ${\beta}$-1,4-endoglucanase gene from Bacillus subtilis H12 was cloned into Escherichia coli JM109 (pBC8) and sequenced. The endoglucanase gene with an insert DNA of 2.5 kb possessed an open reading frame of 1,500 bp encoding a mature protein of 499 amino acids with a calculated molecular mass of 55 kDa. The deduced amino acid sequence showed similarity to those of the known neutral cellulase genes of B. subtilis PAP115 (99.2%) and BSE616 (97.8%), as well as the alkaline gene of Bacillus sp. N4 (55.1%). The endoglucanase activity expressed by E. coli (pBC8) was localized in the periplasmic fraction (80%) and the cytoplasmic fraction (20%). An endoglucanase was purified from the periplasmic fraction by performing gel filtration and anion exchange chromatography. The molecular weight of the purified enzyme was estimated to be 31 kDa by SDS-PAGE, and the maximum activity occurred at pH 7 and $40^{\circ}C$. The enzyme easily hydrolyzed soluble substrates such as carboxymethyl cellulose and barely ${\beta}$-glucan, whereas the sigmacell and xylan, the known insoluble substrates, were not entirely hydrolyzed.

Fermentation of carboxymethylcellulase using recombinant DNA-Bacillus megaterium

  • Son, Kwang-Hee;Jang, Jong-Hyun;Kim, Jung-Hoe
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 1986년도 추계학술대회
    • /
    • pp.525.3-526
    • /
    • 1986
  • For the analysis of fermentation characteristics and productivity of plasmid coded product, car-boxymethylcellulase in a recombinant DNA cell fermentation system, batch and continuous fermentations were carried out using a Bacillus megaterium ATCC 14945 transformed with a plasmid, pCK 108 haboring carboxymethyl cellulase gene. The effects of carbon and nitrogen sources and of temperature and pH on cell growth, product yield, plasmid stability, specific plasmid contents of cell, and gene expression efficiency were carefully studied. These experimental results will be discussed in some details.

  • PDF

Bacillus circulans 유래 cellulolytic xylanase 유전자(bglBC2)의 염기서열 결정 및 분석 (Nucleotide Sequence of Cellulolytic Xylanase Gene (bglBC2) from Bacillus circulans)

  • 김지연
    • 미생물학회지
    • /
    • 제42권1호
    • /
    • pp.67-72
    • /
    • 2006
  • 클로닝된 Bacillus circulans ATCC21367 유래 cellulolytic xylanase 유전자(bglBC2)의 염기서열을 결정 분석하였다. 본 유전자는 1,224 bp의 407개 아미노산을 암호하는 open reading frame (ORF)으로 구성되어 있었으며 염기서열로부터 산출된 유전자의 분자량은 45 kDa으로 효소의 SDS-PAGE로부터 측정된 분자량과 일치하였다. ATG 개시 코돈의 9bp 위쪽에 Shine-Dalgarno (SD) 서열로 추정되는 5'-AAAGGAG-3' 서열이 확인되었고 그 상단에 promoter로 추정되는 -35 서열(TTTACA)과 -10 서열(TATACT)이 위치하고 있었으며, 이는 B. subtilis promoter consensus sequence와 유사하였다. 한편, 이 효소의 아미노산 서열은 이미 보고된 B. circulans KSM-N257의 alkaline $endo-\beta-1,4-glucanase$와는 97%, B. circulans WL-12의 $endo-\beta-1,3-1,4-glucanase$와는 75%, Bacillus sp. KSM-330의 $endo-\beta-1,4-glucanase$ (cellulase)와는 45%의 유사성을 나타내었다. 또한 bglBCS 염기서 열의 정보를 GenBank에 등록하였으며 등록번호는 Ar269256이다.

팽이버섯 수확 후 배지로부터 고온성 Bacillus sp. UJ03의 분리 및 특성 (Isolation and Characterization of Thermophilic Bacillus sp. UJ03 from Spent Mushroom (Flammulina velvtipes) Substrates)

  • 갈상완;조수정
    • 생명과학회지
    • /
    • 제21권10호
    • /
    • pp.1481-1486
    • /
    • 2011
  • 버섯 생산 후 발생되는 부산물인 팽이버섯 수확 후 배지로부터 7종의 고온성 균주를 분리하였으며 이 중 곰팡이독소를 생성하는 Asp. flavus와 Asp. ochraceous에 대한 항균활성이 높으면서 xylanase와 cellulase 생성능이 우수한 균주를 최종 선발하여 UJ03으로 명명하였다. Bacillus ID kit와 VITEK 2 system를 이용하여 분리균 UJ03의 생리적 생화학적 특성을 조사한 결과 분리균 UJ03은 Bacillus 속과 유사한 특징을 나타내었으며 16S rDNA 염기서열 분석 결과에서는 B. amyloliquefaciens와 98.9%의 상동성을 나타내었다. 이와 같은 결과를 종합하여 분리균 UJ03은 Bacillus sp. UJ03으로 동정되었으며 분리균 UJ03이 생성하는 항균물질은 TLC와 HPLC 분석에서 Bacillus 속 균주가 생성하는 펩타이드성 항균물질인 iturin A와 유사한 특성을 나타내었다.

Novel Alkali-Stable, Cellulase-Free Xylanase from Deep-Sea Kocuria sp. Mn22

  • Li, Chanjuan;Hong, Yuzhi;Shao, Zongze;Lin, Ling;Huang, Xiaoluo;Liu, Pengfu;Wu, Gaobing;Meng, Xin;Liu, Ziduo
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권9호
    • /
    • pp.873-880
    • /
    • 2009
  • A novel xylanase gene, Kxyn, was cloned from Kocuria sp. Mn22, a bacteria isolated from the deep sea of the east Pacific. Kxyn consists of 1,170 bp and encodes a protein of 390 amino acids that shows the highest identity (63%) with a xylanase from Thermohifida fusca YX. The mature protein with a molecular mass of approximately 40 kDa was expressed in Escherichia coli BL21 (DE3). The recombinant Kxyn displayed its maximum activity at $55^{\circ}C$ and at pH 8.5. The $K_m,\;V_{max}$, and $k_{cat}$ values of Kxyn for birchwood xylan were 5.4 mg/ml, $272{\mu}mol/min{\cdot}mg$, and 185.1/s, respectively. Kxyn hydrolyzed birchwood xylan to produce xylobiose and xylotriose as the predominant products. The activity of Kxyn was not affected by $Ca^{2+},\;Mg^{2+},\;Na^+,\;K^+$, ${\beta}$-mercaptoethanol, DTT, or SDS, but was strongly inhibited by $Hg^{2+},\;Cu^{2+},Zn^{2+}$, and $Pb^{2+}$. It was stable over a wide pH range, retaining more than 80% activity after overnight incubation at pH 7.5-12. Kxyn is a cellulase-free xylanase. Therefore, these properties make it a candidate for various industrial applications.

A Cellulolytic and Xylanolytic Enzyme Complex from an Alkalothermoanaerobacterium, Tepidimicrobium xylanilyticum BT14

  • Phitsuwan, Paripok;Tachaapaikoon, Chakrit;Kosugi, Akihiko;Mori, Yutaka;Kyu, Khin Lay;Ratanakhanokchai, Khanok
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권5호
    • /
    • pp.893-903
    • /
    • 2010
  • A cellulolytic and xylanolytic enzyme complex-producing alkalothermoanaerobacterium strain, Tepidimicrobium xylanilyticum BT14, is described. The cell was Grampositive, rod-shaped, and endospore-forming. Based on 16S rRNA gene analysis and various lines of biochemical and physiological properties, the strain BT14 is a new member of the genus Tepidimicrobium. The strain BT14 cells had the ability to bind to Avicel, xylan, and corn hull. The pH and temperature optima for growth were 9.0 and $60^{\circ}C$, respectively. The strain BT14 was able to use a variety of carbon sources. When the bacterium was grown on corn hulls under an anaerobic condition, a cellulolytic and xylanolytic enzyme complex was produced. Crude enzyme containing cellulase and xylanase of the strain BT14 was active in broad ranges of pH and temperature. The optimum conditions for cellulase and xylanase activities were pH 8.0 and 9.0 at $60^{\circ}C$, respectively. The crude enzyme had the ability to bind to Avicel and xylan. The analysis of native-PAGE and native-zymograms indicated the cellulosebinding protein showing both cellulase and xylanase activities, whereas SDS-PAGE zymograms showed 4 bands of cellulases and 5 bands of xylanases. Evidence of a cohesinlike amino acid sequence seemed to indicate that the protein complex shared a direct relationship with the cellulosome of Clostridium thermocellum. The crude enzyme from the strain BT14 showed effective degradation of plant biomass. When grown on corn hulls at pH 9.0 and $60^{\circ}C$ under anaerobic conditions, the strain BT14 produced ethanol and acetate as the main fermentation products.

Characterization and Antifungal Activity from Soilborne Streptomyces sp. AM50 towards Major Plant Pathogens

  • Jang, Jong-Ok;Lee, Jung-Bok;Kim, Beam-Soo;Kang, Sun-Chul;Hwang, Cher-Won;Shin, Kee-Sun;Kwon, Gi-Seok
    • 한국환경농학회지
    • /
    • 제30권3호
    • /
    • pp.346-356
    • /
    • 2011
  • BACKGROUND: Chemical fungicides not only may pollute the ecosystem but also can be environmentally hazardous, as the chemicals accumulate in soil. Biological control is a frequently-used environment-friendly alternative to chemical pesticides in phytopathogen management. However, the use of microbial products as fungicides has limitations. This study isolated and characterized a three-antifungal-enzyme (chitinase, cellulase, and ${\beta}$-1,3-glucanase)-producing bacterium, and examined the conditions required to optimize the production of the antifungal enzymes. METHOD AND RESULTS: The antifungal enzymes chitinase, cellulase, and ${\beta}$-1,3-glucanase were produced by bacteria isolated from an sawmill in Korea. Based on the 16S ribosomal DNA sequence analysis, the bacterial strain AM50 was identical to Streptomyces sp. And their antifungal activity was optimized when Streptomyces sp. AM50 was grown aerobically in a medium composed of 0.4% chitin, 0.4% starch, 0.2% ammonium sulfate, 0.11% $Na_2HPO_4$, 0.07% $KH_2PO_4$, 0.0001% $MgSO_4$, and 0.0001% $MnSO_4$ at $30^{\circ}C$. A culture broth of Streptomyces sp. AM50 showed antifungal activity towards the hyphae of plant pathogenic fungi, including hyphae swelling and lysis in P. capsici, factors that may contribute to its suppression of plant pathogenic fungi. CONCLUSION(S): This study demonstrated the multiantifungal enzyme production by Streptomyces sp. AM50 for the biological control of major plant pathogens. Further studies will investigate the synergistic effect, to the growth regulations by biogenic amines and antifungal enzyme gene promoter.

Efficient Constitutive Expression of Cellulolytic Enzymes in Penicillium oxalicum for Improved Efficiency of Lignocellulose Degradation

  • Waghmare, Pankajkumar Ramdas;Waghmare, Pratima Pankajkumar;Gao, Liwei;Sun, Wan;Qin, Yuqi;Liu, Guodong;Qu, Yinbo
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권5호
    • /
    • pp.740-746
    • /
    • 2021
  • Efficient cellulolytic enzyme production is important for the development of lignocellulose-degrading enzyme mixtures. However, purification of cellulases from their native hosts is time- and labor-consuming. In this study, a constitutive expression system was developed in Penicillium oxalicum for the secreted production of proteins. Using a constitutive polyubiquitin gene promoter and cultivating with glucose as the sole carbon source, nine cellulolytic enzymes of different origins with relatively high purity were produced within 48 h. When supplemented to a commercial cellulase preparation, cellobiohydrolase I from P. funiculosum and cellobiohydrolase II from Talaromyces verruculosus showed remarkable enhancing effects on the hydrolysis of steam-exploded corn stover. Additionally, a synergistic effect was observed for these two cellobiohydrolases during the hydrolysis. Taken together, the constitutive expression system provides a convenient tool for the production of cellulolytic enzymes, which is expected to be useful in the development of highly efficient lignocellulose-degrading enzyme mixtures.