• Title/Summary/Keyword: cellulase activities

Search Result 276, Processing Time 0.033 seconds

Enzyme Profiles of Alga-Lytic Bacterial Strain AK-13 Related with Elimination of Cyanobacterium Anabaena cylindrica

  • Kim, Jeong-Dong;Han, Myung-Soo
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.1
    • /
    • pp.184-191
    • /
    • 2004
  • To investigate bacteria with algalytic activities against Anabaena cylindrica when water blooming occurs and to study enzyme profiles associated with alga-lytic activity, various bacterial strains were isolated from surface waters and sediments in eutrophic lakes or reservoirs in Korea. Among 178 isolates, only nine isolates exhibited lytic abilities against A cylindrica on the agar plates, and then the isolate AK-13 was selected as the strongest in lysing the cyanobacterium A. cytindrica. The strain AK-13 was characterized and identified as Sinorhizobium sp. based on fatty acid methyl ether profiles and 16S rDNA sequence. According to the results of the enzyme assays, in the strain An-13 of Sinorhizobium sp., alginase, amylase, proteinase (caseinase and gelatinase), carboxymethyl-cellulase (CMCase), laminarinase, and lipase was produced, namely CMCase, laminarinase and protease were highly active. None of glycosidase was produced. Therefore, enzyme systems of Sinorhizobium sp. AK-13 were very complex to degrade cell walls of A. cylindrica. The peptidoglycans of A. cylindrica mat be hydrolyzed and metabolized to a range of easily utilizable monosaccharides or other low molecular weight organic substances by Sinorhizobium sp. AK-13.

Strength Restoration of The DP Finished Cotton Fabric by Enzymatic Treatment (수지 가공 면직물의 강도 회복을 위한 효소처리 연구)

  • 전미선;김주혜;박명자
    • The Research Journal of the Costume Culture
    • /
    • v.12 no.5
    • /
    • pp.737-742
    • /
    • 2004
  • The purpose of this study is restoration for tearing strength of the durable press (DP) finished 100% cotton fabric by enzymatic treatment. Dimethylol Dihydroxy Ethylene Urea (DMDHEU) was used as a DP finish chemical. Enzymes (cellulase, pectinase, protease, lipolase) were selected based on their specific reaction activities. Ideal application of the enzymes for this work was to remove cross-links created by DMDHEU on the surface of the fibers to offer migration property between microstructures of cellulose, yet cross-links that exist inside of the fibers are still remained to impart effect of wrinkle resistance. Physical characteristics (tearing strength, wrinkle recovery, FT-IR) of enzyme treated samples were measured and compared. It was found out that, in case of enzyme treatment, most of enzymes didn't have a great effect on tearing strength, but, in case of Protease, tearing strength increased at DMDHEU 2% treatment. As a result of an experiment on wrinkle recovery of the textiles treated with enzyme making density of DMDHEU different whenever respective experiment was made, it was discovered that density of DMDHEU increased as wrinkle recovery increased and, in the relation to enzyme treatment especially in Lipase enzyme treatment, the lesser density of DMDHEU, the more wrinkle recovery increased.

  • PDF

Extracellular Enzyme Activities of the Monokaryotic Strains Generated from Basidiospores of Shiitake Mushroom

  • Kwon, Hyuk-Woo;Back, In-Joung;Ko, Han-Gyu;You, Chang-Hyun;Kim, Seong-Hwan
    • Mycobiology
    • /
    • v.36 no.1
    • /
    • pp.74-76
    • /
    • 2008
  • To obtain basic information on the biochemical property of basidiospores of shiitake mushroom (Lentinula edodes), the ability of producing extracellular enzyme was assessed using a chromogenic plate-based assay. For the aim, amylase, avicelase, $\beta$-glucosidase, CM-cellulase, pectinase, proteinase, and xylanase were tested against monokaryotic strains generated from forty basidiospores of two different parental dikaryotic strains of shiitake mushroom, Sanjo-101Ho and Sanjo-108Ho. These two parental strains showed different degree of extracellular enzyme activity. No identical patterns of the degree of enzyme activity were observed between monokaryotic strains and parental strains of the two shiitake cultivars. The degree of extracellular enzyme activity also varied among monokaryotic strains of the two shiitake cultivars. Our results showed that dikaryotic parental strains of shiitake mushroom produce monokaryotic basidiospores having very diverse biochemical properties.

Plant Growth Promotion and Antagonistic Activities Against Anthracnose of Burkholderia sp. LPN-2 Strain

  • Kim, WonChan;Seo, SangHyun;Lee, ChangHee;Park, JunHong;Kang, SangJae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.3
    • /
    • pp.251-258
    • /
    • 2016
  • A rhizobacterium LPN-2, which showed strong antifungal activity and auxin producing ability, was isolated from a farmland in North Gyeongsang Province, South Korea. Based on analysis of the 16S rDNA sequence, strain LPN-2 was identified as a novel strain of Burkholderia and was designated as Burkholderia sp. LPN-2. In vitro experiments showed that the isolated stain LPN-2 significantly produced auxin within 48 hr incubation. In order to check for PGPR function we performed in vivo growth promoting test in different crops, including mung bean, pea and cabbage. Application of Burkholderia sp. LPN-2 showed dramatic growth promoting effect on all the tested plants. We also confirmed siderophore and cellulase productions by Burkholderia sp. LPN-2 using CAS blue agar and CMC plate test. Further treatment with LPN-2 and the crude culture broth was effective in suppressing anthracnose in vitro test and also reduced incidence and severity of anthracnose in apple and pepper. Taken together, we conclude that Burkholderia sp. LPN-2 might be used as organic fertilizer for effective crop production in organic farming.

The Brown-Rot Basidiomycete Fomitopsis palustris Has the Endo-Glucanases Capable of Degrading Microcrystalline Cellulose

  • Yoon, Jeong-Jun;Cha, Chang-Jun;Kim, Yeong-Suk;Son, Dong-Won;Kim, Young-Kyoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.800-805
    • /
    • 2007
  • Two endoglucanases with processive cellulase activities, produced from Fomitopsis palustris grown on 2% microcrystalline cellulose(Avicel), were purified to homogeneity by anion-exchange and gel filtration column chromatography systems. SDS-PAGE analysis indicated that the molecular masses of the purified enzymes were 47 kDa and 35 kDa, respectively. The amino acid sequence analysis of the 47-kDa protein(EG47) showed a sequence similarity with fungal glycoside hydrolase family 5 endoglucanase from the white-rot fungus Phanerochaete chrysosporium. N-terminal and internal amino acid sequences of the 35-kDa protein(EG35), however, had no homology with any other glycosylhydrolases, although the enzyme had high specific activity against carboxymethyl cellulose, which is a typical substrate for endoglucanases. The initial rate of Avicel hydrolysis by EG35 was relatively fast for 48 h, and the amount of soluble reducing sugar released after 96 h was $100{\mu}g/ml$. Although EG47 also hydrolyzed Avicel, the hydrolysis rate was lower than that of EG35. Thin layer chromatography analysis of the hydrolysis products released from Avicel indicated that the main product was cellobiose, suggesting that the brown-rot fungus possesses processive EGs capable of degrading crystalline cellulose.

Characterization of L-asparaginase-producing Trichoderma spp. Isolated from Marine Environments

  • Woon-Jong, Yu;Dawoon, Chung;Yong Min, Kwon;Seung Sub, Bae;Eun-Seo, Cho;Hye Suck, An;Grace, Choi
    • Journal of Marine Life Science
    • /
    • v.7 no.2
    • /
    • pp.121-128
    • /
    • 2022
  • L-asparaginase (ASNase) is a therapeutic enzyme used to treat acute lymphoblastic leukemia. Currently, the most widely used ASNases are originated from bacteria. However, owing to the adverse effects of bacterial ASNases, new resources for ASNase production should be explored. Fungal enzymes are considered efficient and compatible resources of natural products for diverse applications. In particular, fungal species belonging to the genus Trichoderma are well-known producers of several commercial enzymes including cellulase, chitinase, and xylanase. However, enzyme production by marine-derived Trichoderma spp. remains to be elucidated. While screening for extracellular ASNase-producing fungi from marine environments, we found four strains showing extracellular ASNase activity. Based on the morphological and phylogenetic analyses using sequences of translation elongation factor 1-alpha (tef1α), the Trichoderma isolates were identified as T. afroharzianum, T. asperellem, T. citrinoviride, and Trichoderma sp. 1. All four strains showed different ASNase activities depending on the carbon sources. T. asperellem MABIK FU00000795 showed the highest ASNase value with lactose as a carbon source. Based on our findings, we propose that marine-derived Trichoderma spp. are potential candidates for novel ASNase production.

Promotion of Tricholoma matsutake mycelium growth by Penicillium citreonigrum

  • Doo-Ho Choi;Jae-Gu Han;Kang-Hyo Lee;An Gi-Hong
    • Mycobiology
    • /
    • v.51 no.5
    • /
    • pp.354-359
    • /
    • 2023
  • Tricholoma matsutake has been the most valuable ectomycorrhizal fungi in Asia because of its unique flavor and taste. However, due to the difficulty of artificial cultivation, the cultivation of T. matsutake has relied on natural growth in forests. To cultivate the T. matsutake artificially, microorganisms in fairy rings were introduced. In this study, we isolated 30 fungal species of microfungi from the soil of fairy rings. Among them, one single fungal strain showed a promoting effect on the growth of T. matsutake. The growth effect was confirmed by measuring the growth area of T. matsutake and enzyme activities including a-amylase, cellulase, and b-glucosidase. In comparison with control, microfungal metabolite increased the growth area of T. matsutake by 213% and the enzyme activity of T. matsutake by 110-200%. The isolated fungal strain was identified as Penicillium citreonigrum by BLAST on the NCBI database. The Discovery of this microfungal strain is expected to contribute to artificial cultivation of T. matsutake.

Enzyme Activities and Cellulose Degradation of Domestic Softwoods in Shaking Culture of Fomitopsis palustris (국내산 침엽수 목분의 진탕배양에서 나타난 Fomitopsis palustris의 효소 활성 및 셀룰로오스 분해)

  • Choi, Doo-Yeol;Lee, Young-Min;Kim, Young-kyoon;Yoon, Jeong-Jun;Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.91-99
    • /
    • 2007
  • Activities of the extracellular enzyme from Fomitopsis palustris, a brown-rot fungi, and by which crystallinity changes of cellulose in the various softwoods, such as Larix leptolepsis, Finns rigida, Finns koraiensis and Finns densiflora by liquid culture, were investigated. Activity of Cellobiohydrolase (CBH) from F. palustris was detected in the every test softwoods culture, showing activities of the Endoglucanase (EG), $\beta$-glucosidase (BGL) and $\beta$-1,4-xylosidase (BXL). It was shown high enzyme activities in the sapwood culture than heartwood of the same wood species, However, the enzyme activities in most of test wood cultures increased with longer incubation time, indicating a possibility of intermix sapwood and heartwood for degradation process by enzyme. Also it was shown that protein patterns of the extracellular enzyme from F. palustris in wood particle substrate of the several domestic softwoods were similar with each other wood species, which suggested the possibility of mixing all softwoods in saccharification by enzyme from F. palustris. Crystallinity reduction value of cellulose by F. palustris was 4.2~20.4% in 4 weeks cultivation, 12.9~28.9% in 8 weeks.

Influence of cell-wall degrading enzyme treatment and Saccharomyces cerevisiae fermentation on the antioxidant and antibacterial activities of green tea leaf (세포벽 분해 효소 처리 및 Saccharomyces cerevisiae 발효가 녹차 잎의 항산화 및 항균 활성에 미치는 영향)

  • Dong-Wook Lim;Ga-Yang Lee;Min-Jeong Jung;Byoung-Mok Kim;Joon-Young Jun
    • Food Science and Preservation
    • /
    • v.30 no.6
    • /
    • pp.1043-1055
    • /
    • 2023
  • This study was conducted to suggest an extraction method for preparing the extract from green tea leaves that possess enhanced antioxidant and antibacterial activities. Different ethanol concentrations were tested to recover phenolics and flavonoids, and 50% ethanol was the best under heat treatment (121℃, 15 min). The ethanol extract exhibited excellent DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity and growth inhibition against B. cereus, B. licheniformis, S. aureus subsp. aureus, and A. hydrophila subsp. hydrophila. To enhance the antioxidant and antibacterial activities, cell-wall degrading enzymes (2.5% cellulose+2.5% pectinase, v/w dry sample) treatment and Saccharomyces cerevisiae fermentation were applied singly or in combination. The enzymatic treatment of green tea leaves notably increased extraction yield. However, the antioxidant and antibacterial activities of the extract were lower than those of the control (heat-treated 50% ethanol extract). In contrast, the yeast fermentation alone did not affect the yield, but enhanced antioxidant and antibacterial activities, contributing to the increase in the extract's total phenolic and flavonoid contents.

Selection of Microorganisms and Optimization of Manufacture Process for Cheonggukjang (고품질의 청국장 생산 발효균주 선별 및 최적화)

  • Hwang, Hyun-Ae;Lee, Nam-Kuen;Cho, Il-Jae;Hahm, Young-Tae;Kwon, Ki-Ok;Kim, Byung-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.406-411
    • /
    • 2008
  • This study was conducted to examine the quality enhancement of fermented soybean pastes (cheonggukjang) using microorganisms with high enzyme activities and proper experimental design. The microorganisms for soybean paste fermentation were selected from a specific area of Gyeonggi and were idenlified by 16S rDNA sequence analysis. To prepare the cheonggukjang, an optimum mixing ratio of selected microorganisms was determined using contour plots and numerical optimization methods. A total of 39 microorganisms were isolated from the soybean paste, consisting primarily of Bacillus subtilis and Bacillus licheniformis, and no mold was found. Three microorganisms showing high enzyme activities were selected and used to formulate an optimum mixing ratio for cheonggukjang preparation. Based on levels of amino-nitrogen, ammonium-nitrogen, antioxidant activity values, and sensory preference results, the optimum mixing ratio of 50% of Bacillus sp. SC-1 and 50% SC-3 was suggested for the manufacture of high quality of cheonggukjang.