• Title/Summary/Keyword: cellular development

Search Result 1,723, Processing Time 0.034 seconds

Effects of Wearing Bio-active Material Coated Fabric against γ-irradiation-induced Cellular Damage in Sprague-Dawley Rats

  • Kang, Jung Ae;Kim, Hye Rim;Yoon, Sunhye;Nam, You Ree;Park, Sang Hyun;Go, Kyung-Chan;Yang, Gwang-Wung;Rho, Young-Hwan;Park, Hyo-Suk;Jang, Beom Su
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.206-210
    • /
    • 2016
  • Background: Ionizing radiation causes cellular damage and death through the direct damage and/or indirectly the production of ROS, which induces oxidative stress. This study was designed to evaluate the in vivo radioprotective effects of a bio-active material coated fabric (BMCF) against ${\gamma}$-irradiation-induced cellular damage in Sprague-Dawley (SD) rats. Materials and Methods: Healthy male SD rats wore bio-active material coated (concentrations in 10% and 30%) fabric for 7 days after 3 Gy of ${\gamma}$-irradiation. Radioprotective effects were evaluated by performing various biochemical assays including spleen and thymus index, WBC count, hepatic damage marker enzymes [aspartate transaminase (AST) and alanine transaminase (ALT)] in plasma, liver antioxidant enzymes, and mitochondrial activity in muscle. Results and Discussions: Exposure to ${\gamma}$-irradiation resulted in hepatocellular and immune systemic damage. Gamma-irradiation induced decreases in antioxidant enzymes. However, wearing the BMCF-30% decreased significantly AST and ALT activities in plasma. Furthermore, wearing the BMCF-30% increased SOD (superoxide dismutase) and mitochondrial activity. Conclusion: These results suggest that wearing BMCF offers effective radioprotection against ${\gamma}$-irradiation-induced cellular damage in SD rats.

Motivations for Cellular Phone Uses and Parent-Children Communication by Gender among Middle School Students (중학생의 휴대전화 이용 동기 및 성별에 따른 부모와의 의사소통 수준)

  • Cheon, Hye-Jung;Lee, Jung-Eun
    • Journal of Families and Better Life
    • /
    • v.24 no.5 s.83
    • /
    • pp.101-112
    • /
    • 2006
  • This study examined factors related to the motivation for the uses of cellular phones and the relationship between motivation for cellular phone use and parent-child communication among middle school students. A total of 223 questionnaires were submitted and analyzed. The characteristics of motive structure of the middle school students were found as recreation, time management, information-seeking, reassurance and fashion/showing off. Among those motivations, these middle school students examined here were found to use cellular phones in similar ways to how conventional telephone is used such as work/instrumental reasons and socializing/entertaining. The motivations showed a significant association with the level of parent-child communication. Information-seeking and time management motivation were positively related with an open communication level while fashion/showing off and recreation were negatively related with an open communication level.

Interference Mitigation Scheme for Device-to-Device MIMO Communications Underlaying a Cellular Network

  • Nam, Yujin;So, Jaewoo;Kim, Jinsung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.1841-1865
    • /
    • 2017
  • This paper proposes a new interference mitigation scheme for device-to-device (D2D) communications underlaying a cellular network. The object of the proposed scheme is to determine the number of data streams, a precoding matrix, and a decoding matrix of D2D networks so as to maximize the system capacity given the number of data streams of a cellular network while satisfying the constraint of the inter-system interference from D2D networks to the cellular network. Unlike existing interference mitigation schemes based on the interference alignment technique, the proposed scheme operates properly regardless of the number of data streams of a cellular network and moreover it does not require changing the precoding and decoding matrices of a cellular network. The simulation results demonstrate that the proposed scheme significantly increases the system capacity by mitigating the intra- and inter-system interference.

Design and Development of m-Learning Service Based on 3G Cellular Phones

  • Chung, Kwang-Sik;Lee, Jeong-Eun
    • Journal of Information Processing Systems
    • /
    • v.8 no.3
    • /
    • pp.521-538
    • /
    • 2012
  • As the knowledge society matures, not only distant, but also off-line universities are trying to provide learners with on-line educational contents. Particularly, high effectiveness of mobile devices for e-Learning has been demonstrated by the university sector, which uses distant learning that is based on blended learning. In this paper, we analyzed previous m-Learning scenarios and future technology prospects. Based on the proposed m-Learning scenario, we designed cellular phone-based educational contents and service structure, implemented m-Learning system, and analyzed m-Learning service satisfaction. The design principles of the m-Learning service are 1) to provide learners with m-Learning environment with both cellular phones and desktop computers; 2) to serve announcements, discussion boards, Q&A boards, course materials, and exercises on cellular phones and desktop computers; and 3) to serve learning activities like the reviewing of full lectures, discussions, and writing term papers using desktop computers and cellular phones. The m-Learning service was developed on a cellular phone that supports H.264 codex in 3G communication technology. Some of the functions of the m-Learning design principles are implemented in a 3G cellular phone. The contents of lectures are provided in the forms of video, text, audio, and video with text. One-way educational contents are complemented by exercises (quizzes).

Myosin X and Cytoskeletal Reorganization

  • Ikebe, Mitsuo;Sato, Osamu;Sakai, Tsuyoshi
    • Applied Microscopy
    • /
    • v.48 no.2
    • /
    • pp.33-42
    • /
    • 2018
  • Myosin X is one of myosin superfamily members having unique cellular functions on cytoskeletal reorganization. One of the most important cellular functions of myosin X is to facilitate the formation of membrane protrusions. Since membrane protrusions are important factors for diverse cellular motile processes including cell migration, cell invasion, path-finding of the cells, intercellular communications and so on, it has been thought that myosin X plays an important role in various processes that involve cytoskeletal reorganization including cancer progression and development of neuronal diseases. Recent studies have revealed that the unique cellular function of myosin X is closely correlated with its unique structural characteristics and motor properties. Moreover, it is found that the molecular and cellular activities of myosin X are controlled by its specific binding partner. Since recent studies have revealed the presence of various specific binding partners of myosin X, it is anticipated that the structural, biochemical and cell biological understanding of the binding partner dependent regulation of myosin X function can uncover the role of myosin X in diverse cell biological processes and diseases.

Real-Time Force Sensing in the Envelope of Zebrafish Egg during Micropipette Penetration

  • Yun, Seok;Kim, Deok-Ho;Kim, Byung-Kyu;Lee, Sang-Ho;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2451-2456
    • /
    • 2003
  • In biological cell manipulation, manual thrust or penetration of an injection pipette into an egg is currently performed by a skilled operator, relying only on visual feedback information. Massive load of various micro injection of either genes, fluid or cells in the postgenomic era calls a more reliable and automatic micro injection system that can test hundreds of genes or cell types at a single experiment. We initiated to study cellular force sensing in zebrafish eggs as the first step for the development of a more controllable micro injection system by any inexperienced operator. Zebrafish eggs at different developmental stages were collected and an integrated biomanipulation system was employed to measure cellular force during penetrating the egg envelope, the chorion. First of all, the biomanipulation system integrated with cellular force sensing instrument is implemented to measure the penetration force of cell membranes and characterize mechanical properties of zebrafish embryo cells. Furthermore, implementation of cellular force sensing system and calibration are presented. Finally, the cellular force sensing of penetrating cell membranes at each developmental stages was experimentally performed. The results demonstrated that the biomanipulation system with force sensing capability can measure cellular force at real-time while the injection operation is undergoing. The magnitude of the measured force was in the range of several hundreds of uN. The precise real-time measurement should provide the first step forwards for the development of an automatic and reliable injection system of various materials into biological cells.

  • PDF

The Development of the Design Guideline and the Comparative Evaluation For the Remanufacturing of a Cellular Phone (휴대폰 재제조를 위한 친환경 설계 지침 개발 및 비교 평가)

  • 김찬석;이화조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1029-1033
    • /
    • 2004
  • Concern over the negative environmental impacts associated with the production, use and End-of-Life(EoL) of cellular phones is particularly high due to large production volumes and characteristically short time scales of technological and stylistic obsolescence. Therefore we have to research the environment-friendly technologies and the recycling methods. This paper introduces an improvement of cellular phone remanufacturing processes and develops the Directive of DFE(Design for Environment) for the remanufacturing of a cellular phone. Then We discuss the results of the comparative evaluations.

  • PDF

A Study on Implementation of Evolving Cellular Automata Neural System (진화하는 셀룰라 오토마타 신경망의 하드웨어 구현에 관한 연구)

  • 반창봉;곽상영;이동욱;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.255-258
    • /
    • 2001
  • This paper is implementation of cellular automata neural network system which is a living creatures' brain using evolving hardware concept. Cellular automata neural network system is based on the development and the evolution, in other words, it is modeled on the ontogeny and phylogeny of natural living things. The proposed system developes each cell's state in neural network by CA. And it regards code of CA rule as individual of genetic algorithm, and evolved by genetic algorithm. In this paper we implement this system using evolving hardware concept Evolving hardware is reconfigurable hardware whose configuration is under the control of an evolutionary algorithm. We design genetic algorithm process for evolutionary algorithm and cells in cellular automata neural network for the construction of reconfigurable system. The effectiveness of the proposed system is verified by applying it to time-series prediction.

  • PDF

Proline Metabolism in Neurological and Psychiatric Disorders

  • Yao, Yuxiao;Han, Weiping
    • Molecules and Cells
    • /
    • v.45 no.11
    • /
    • pp.781-788
    • /
    • 2022
  • Proline plays a multifaceted role in protein synthesis, redox balance, cell fate regulation, brain development, and other cellular and physiological processes. Here, we focus our review on proline metabolism in neurons, highlighting the role of dysregulated proline metabolism in neuronal dysfunction and consequently neurological and psychiatric disorders. We will discuss the association between genetic and protein function of enzymes in the proline pathway and the development of neurological and psychiatric disorders. We will conclude with a potential mechanism of proline metabolism in neuronal function and mental health.

Evaluation of porcine urine-derived cells as nuclei donor for somatic cell nuclear transfer

  • Zhang, Yu-Ting;Yao, Wang;Chai, Meng-Jia;Liu, Wen-Jing;Liu, Yan;Liu, Zhong-Hua;Weng, Xiao-Gang
    • Journal of Veterinary Science
    • /
    • v.23 no.2
    • /
    • pp.40.1-40.13
    • /
    • 2022
  • Background: Somatic cell nuclear transfer (SCNT) is used widely in cloning, stem cell research, and regenerative medicine. The type of donor cells is a key factor affecting the SCNT efficiency. Objectives: This study examined whether urine-derived somatic cells could be used as donors for SCNT in pigs. Methods: The viability of cells isolated from urine was assessed using trypan blue and propidium iodide staining. The H3K9me3/H3K27me3 level of the cells was analyzed by immunofluorescence. The in vitro developmental ability of SCNT embryos was evaluated by the blastocyst rate and the expression levels of the core pluripotency factor. Blastocyst cell apoptosis was examined using a terminal deoxynucleotidyl transferase dUTP nick end-labeling assay. The in vivo developmental ability of SCNT embryos was evaluated after embryo transfer. Results: Most sow urine-derived cells were viable and could be cultured and propagated easily. On the other hand, most of the somatic cells isolated from the boar urine exhibited poor cellular activity. The in vitro development efficiency between the embryos produced by SCNT using porcine embryonic fibroblasts (PEFs) and urine-derived cells were similar. Moreover, The H3K9me3 in SCNT embryos produced from sow urine-derived cells and PEFs at the four-cell stage showed similar intensity. The levels of Oct4, Nanog, and Sox2 expression in blastocysts were similar in the two groups. Furthermore, there is a similar apoptotic level of cloned embryos produced by the two types of cells. Finally, the full-term development ability of the cloned embryos was evaluated, and the cloned fetuses from the urine-derived cells showed absorption. Conclusions: Sow urine-derived cells could be used to produce SCNT embryos.