DOI QR코드

DOI QR Code

Myosin X and Cytoskeletal Reorganization

  • Ikebe, Mitsuo (Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler) ;
  • Sato, Osamu (Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler) ;
  • Sakai, Tsuyoshi (Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler)
  • Received : 2018.04.11
  • Accepted : 2018.06.19
  • Published : 2018.06.30

Abstract

Myosin X is one of myosin superfamily members having unique cellular functions on cytoskeletal reorganization. One of the most important cellular functions of myosin X is to facilitate the formation of membrane protrusions. Since membrane protrusions are important factors for diverse cellular motile processes including cell migration, cell invasion, path-finding of the cells, intercellular communications and so on, it has been thought that myosin X plays an important role in various processes that involve cytoskeletal reorganization including cancer progression and development of neuronal diseases. Recent studies have revealed that the unique cellular function of myosin X is closely correlated with its unique structural characteristics and motor properties. Moreover, it is found that the molecular and cellular activities of myosin X are controlled by its specific binding partner. Since recent studies have revealed the presence of various specific binding partners of myosin X, it is anticipated that the structural, biochemical and cell biological understanding of the binding partner dependent regulation of myosin X function can uncover the role of myosin X in diverse cell biological processes and diseases.

Keywords

References

  1. Albiges-Rizo C, Destaing O, Fourcade B, Planus E, and Block M R (2009) Actin machinery and mechanosensitivity in invadopodia, podosomes and focal adhesions. J. Cell Sci. 122, 3037-3049. https://doi.org/10.1242/jcs.052704
  2. Almagro S, Durmort C, Chervin-Petinot A, Heyraud S, Dubois M, Lambert O, Maillefaud C, Hewat E, Schaal J P, Huber P, and Gulino-Debrac D (2010) The motor protein myosin-X transports VE-cadherin along filopodia to allow the formation of early endothelial cell-cell contacts. Mol. Cell Biol. 30, 1703-1717. https://doi.org/10.1128/MCB.01226-09
  3. Arjonen A, Kaukonen R, Mattila E, Rouhi P, Hognas G, Sihto H, Miller B W, Morton J P, Bucher E, Taimen P, Virtakoivu R, Cao Y, Sansom O J, Joensuu H, and Ivaska J (2014) Mutant p53-associated myosin-X upregulation promotes breast cancer invasion and metastasis. J. Clin. Invest. 124, 1069-1082. https://doi.org/10.1172/JCI67280
  4. Bao J, Huck D, Gunther L K, Sellers J R, and Sakamoto T (2013) Actin structure-dependent stepping of myosin 5a and 10 during processive movement. PLoS One 8, e74936. https://doi.org/10.1371/journal.pone.0074936
  5. Bear J E, Loureiro J J, Libova I, Fassler R, Wehland J, and Gertler F B (2000) Negative regulation of fibroblast motility by Ena/VASP proteins. Cell 101, 717-728. https://doi.org/10.1016/S0092-8674(00)80884-3
  6. Bear J E, Svitkina T M, Krause M, Schafer D A, Loureiro J J, Strasser G A, Maly I V, Chaga O Y, Cooper J A, Borisy G G, and Gertler F B (2002) Antagonism between Ena/VASP proteins and actin filament cappingregulates fibroblast motility. Cell 109, 509-521. https://doi.org/10.1016/S0092-8674(02)00731-6
  7. Berg J S and Cheney R E (2002) Myosin-X is an unconventional myosin that undergoes intrafilopodial motility. Nat. Cell Biol. 4, 246-250. https://doi.org/10.1038/ncb762
  8. Berg J S, Derfler B H, Pennisi C M, Corey D P, and Cheney R E (2000) Myosin-X, a novel myosin with pleckstrin homology domains, associates with regions of dynamic actin. J. Cell Sci. 113 (Pt 19), 3439-3451.
  9. Bird J E, Takagi Y, Billington N, Strub M P, Sellers J R, and Friedman T B (2014) Chaperone-enhanced purification of unconventional myosin 15, a molecular motor specialized for stereocilia protein trafficking. Proc. Natl. Acad. Sci. U. S. A. 111, 12390-12395. https://doi.org/10.1073/pnas.1409459111
  10. Bohil A B, Robertson B W, and Cheney R E (2006) Myosin-X is a molecular motor that functions in filopodia formation. Proc. Natl. Acad. Sci. U. S. A. 103, 12411-12416. https://doi.org/10.1073/pnas.0602443103
  11. Cao R, Chen J, Zhang X, Zhai Y, Qing X, Xing W, Zhang L, Malik Y S, Yu H, and Zhu X (2014) Elevated expression of myosin X in tumours contributes to breast cancer aggressiveness and metastasis. Br. J. Cancer 111, 539-550. https://doi.org/10.1038/bjc.2014.298
  12. Caporizzo M A, Fishman C E, Sato O, Jamiolkowski R M, Ikebe M, and Goldman Y E (2018) The antiparallel dimerization of myosin X impairs bundle selectivity for processive motility. Biophys. J. 114, 1400-1410. https://doi.org/10.1016/j.bpj.2018.01.038
  13. Chan P C, Hsu R Y, Liu C W, Lai C C, and Chen H C (2014) Adducin-1 is essential for mitotic spindle assembly through its interaction with myosin-X. J. Cell Biol. 204, 19-28. https://doi.org/10.1083/jcb.201306083
  14. Chan S S, Zheng H, Su M W, Wilk R, Killeen M T, Hedgecock E M, and Culotti J G (1996) UNC-40, a C. elegans homolog of DCC (Deleted in Colorectal Cancer), is required in motile cells responding to UNC-6netrin cues. Cell 87, 187-195. https://doi.org/10.1016/S0092-8674(00)81337-9
  15. Chen C P, Sun Z L, Lu X, Wu W X, Guo W L, Lu J J, Han C, Huang J Q, and Fang Y (2016) MiR-340 suppresses cell migration and invasion by targeting MYO10 in breast cancer. Oncol. Rep. 35, 709-716. https://doi.org/10.3892/or.2015.4411
  16. Chen Z, Liu S, Tian L, Wu M, Ai F, Tang W, Zhao L, Ding J, Zhang L, and Tang A (2015) miR-124 and miR-506 inhibit colorectal cancer progression by targeting DNMT3B and DNMT1. Oncotarget 6, 38139-38150.
  17. Cheney R E and Mooseker M S (1992) Unconventional myosins. Curr. Opin. Cell Biol. 4, 27-35. https://doi.org/10.1016/0955-0674(92)90055-H
  18. Courson D S and Cheney R E (2015) Myosin-X and disease. Exp. Cell Res. 334, 10-15. https://doi.org/10.1016/j.yexcr.2015.03.014
  19. Dent E W, Kwiatkowski A V, Mebane L M, Philippar U, Barzik M, Rubinson D A, Gupton S, Van Veen J E, Furman C, Zhang J, Alberts A S, Mori S, and Gertler F B (2007) Filopodia are required for cortical neurite initiation. Nat. Cell Biol. 9, 1347-1359. https://doi.org/10.1038/ncb1654
  20. Even-Ram S, Doyle A D, Conti M A, Matsumoto K, Adelstein R S, and Yamada K M (2007) Myosin IIA regulates cell motility and actomyosinmicrotubule crosstalk. Nat. Cell Biol. 9, 299-309. https://doi.org/10.1038/ncb1540
  21. Faix J and Rottner K (2006) The making of filopodia. Curr. Opin. Cell Biol. 18, 18-25. https://doi.org/10.1016/j.ceb.2005.11.002
  22. Gousset K, Marzo L, Commere P H, and Zurzolo C (2013) Myo10 is a key regulator of TNT formation in neuronal cells. J. Cell Sci. 126, 4424-4435. https://doi.org/10.1242/jcs.129239
  23. Gupton S L and Gertler F B (2007) Filopodia: the fingers that do the walking. Sci. STKE 2007, re5.
  24. Guzik-Lendrum S, Heissler S M, Billington N, Takagi Y, Yang Y, Knight P J, Homsher E, and Sellers J R (2013) Mammalian myosin-18A, a highly divergent myosin. J. Biol. Chem. 288, 9532-9548. https://doi.org/10.1074/jbc.M112.441238
  25. Haslam R J, Koide H B, and Hemmings B A (1993) Pleckstrin domain homology. Nature 363, 309-310.
  26. He K, Sakai T, Tsukasaki Y, Watanabe T M, and Ikebe M (2017) Myosin X is recruited to nascent focal adhesions at the leading edge and induces multi-cycle filopodial elongation. Sci. Rep. 7, 13685. https://doi.org/10.1038/s41598-017-06147-6
  27. Hirano Y, Hatano T, Takahashi A, Toriyama M, Inagaki N, and Hakoshima T (2011) Structural basis of cargo recognition by the myosin-X MyTH4-FERM domain. EMBO J. 30, 2734-2747. https://doi.org/10.1038/emboj.2011.177
  28. Homma K and Ikebe M (2005) Myosin X is a high duty ratio motor. J. Biol. Chem. 280, 29381-29391. https://doi.org/10.1074/jbc.M504779200
  29. Hu Z, Chen J, Tian T, Zhou X, Gu H, Xu L, Zeng Y, Miao R, Jin G, Ma H, Chen Y, and Shen H (2008) Genetic variants of miRNA sequences and non-small cell lung cancer survival. J. Clin. Invest. 118, 2600-2608.
  30. Hunt S, Jones A V, Hinsley E E, Whawell S A, and Lambert D W (2011) MicroRNA-124 suppresses oral squamous cell carcinoma motility by targeting ITGB1. FEBS Lett. 585, 187-192. https://doi.org/10.1016/j.febslet.2010.11.038
  31. Ikebe M (2008) Regulation of the function of mammalian myosin and its conformational change. Biochem. Biophys. Res. Commun. 369, 157-164. https://doi.org/10.1016/j.bbrc.2008.01.057
  32. Keino-Masu K, Masu M, Hinck L, Leonardo E D, Chan S S, Culotti J G, and Tessier-Lavigne M (1996) Deleted in Colorectal Cancer (DCC) encodes a netrin receptor. Cell 87, 175-185. https://doi.org/10.1016/S0092-8674(00)81336-7
  33. Kerber M L and Cheney R E (2011) Myosin-X: a MyTH-FERM myosin at the tips of filopodia. J. Cell Sci. 124, 3733-3741. https://doi.org/10.1242/jcs.023549
  34. Kerber M L, Jacobs D T, Campagnola L, Dunn B D, Yin T, Sousa A D, Quintero O A, and Cheney R E (2009) A novel form of motility in filopodia revealed by imaging myosin-X at the single-molecule level. Curr. Biol. 19, 967-973. https://doi.org/10.1016/j.cub.2009.03.067
  35. Knight P J, Thirumurugan K, Xu Y, Wang F, Kalverda A P, Stafford W F 3rd, Sellers J R, and Peckham M (2005) The predicted coiled-coil domain of myosin 10 forms a novel elongated domain that lengthens the head. J. Biol. Chem. 280, 34702-34708. https://doi.org/10.1074/jbc.M504887200
  36. Kolodziej P A, Timpe L C, Mitchell K J, Fried S R, Goodman C S, Jan L Y, and Jan Y N (1996) frazzled encodes a Drosophila member of the DCC immunoglobulin subfamily and is required for CNS and motor axon guidance. Cell 87, 197-204. https://doi.org/10.1016/S0092-8674(00)81338-0
  37. Krementsov D N, Krementsova E B, and Trybus K M (2004) Myosin V: regulation by calcium, calmodulin, and the tail domain. J. Cell Biol. 164, 877-886. https://doi.org/10.1083/jcb.200310065
  38. Lai M, Guo Y, Ma J, Yu H, Zhao D, Fan W, Ju X, Sheikh M A, Malik Y S, Xiong W, Guo W, and Zhu X (2015) Myosin X regulates neuronal radial migration through interacting with N-cadherin. Front. Cell Neurosci. 9, 326.
  39. Li X D, Jung H S, Mabuchi K, Craig R, and Ikebe M (2006) The globular tail domain of myosin Va functions as an inhibitor of the myosin Va motor. J. Biol. Chem. 281, 21789-21798. https://doi.org/10.1074/jbc.M602957200
  40. Li X D, Jung H S, Wang Q, Ikebe R, Craig R, and Ikebe M (2008) The globular tail domain puts on the brake to stop the ATPase cycle of myosin Va. Proc. Natl. Acad. Sci. U. S. A. 105, 1140-1145. https://doi.org/10.1073/pnas.0709741105
  41. Li X D, Mabuchi K, Ikebe R, and Ikebe M (2004) Ca2+-induced activation of ATPase activity of myosin Va is accompanied with a large conformational change. Biochem. Biophys. Res. Commun. 315, 538-545. https://doi.org/10.1016/j.bbrc.2004.01.084
  42. Lin S C, Liu C J, Lin J A, Chiang W F, Hung P S, and Chang K W (2010) miR-24 up-regulation in oral carcinoma: positive association from clinical and in vitro analysis. Oral. Oncol. 46, 204-208. https://doi.org/10.1016/j.oraloncology.2009.12.005
  43. Linder S, Wiesner C, and Himmel M (2011) Degrading devices: invadosomes in proteolytic cell invasion. Annu. Rev. Cell Dev. Biol. 27, 185-211. https://doi.org/10.1146/annurev-cellbio-092910-154216
  44. Liu Y, Hsin J, Kim H, Selvin P R, and Schulten K (2011) Extension of a three-helix bundle domain of myosin VI and key role of calmodulins. Biophys. J. 100, 2964-2973. https://doi.org/10.1016/j.bpj.2011.05.010
  45. Lu Q, Ye F, Wei Z, Wen Z, and Zhang M (2012) Antiparallel coiled-coilmediated dimerization of myosin X. Proc. Natl. Acad. Sci. U. S. A. 109, 17388-17393. https://doi.org/10.1073/pnas.1208642109
  46. Lu Q, Yu J, Yan J, Wei Z, and Zhang M (2011) Structural basis of the myosin X PH1(N)-PH2-PH1(C) tandem as a specific and acute cellular PI(3,4,5)P(3) sensor. Mol. Biol. Cell 22, 4268-4278. https://doi.org/10.1091/mbc.e11-04-0354
  47. Murphy D A and Courtneidge S A (2011) The 'ins' and 'outs' of podosomes and invadopodia: characteristics, formation and function. Nat. Rev. Mol. Cell Biol. 12, 413-426. https://doi.org/10.1038/nrm3141
  48. Musacchio A, Gibson T, Rice P, Thompson J, and Saraste M (1993) The PH domain: a common piece in the structural patchwork of signalling proteins. Trends Biochem. Sci. 18, 343-348. https://doi.org/10.1016/0968-0004(93)90071-T
  49. Nagy S, Ricca B L, Norstrom M F, Courson D S, Brawley C M, Smithback P A, and Rock R S (2008) A myosin motor that selects bundled actin for motility. Proc. Natl. Acad. Sci. U. S. A. 105, 9616-9620. https://doi.org/10.1073/pnas.0802592105
  50. Peng X H, Huang H R, Lu J, Liu X, Zhao F P, Zhang B, Lin S X, Wang L, Chen H H, Xu X, Wang F, and Li X P (2014) MiR-124 suppresses tumor growth and metastasis by targeting Foxq1 in nasopharyngeal carcinoma. Mol. Cancer 13, 186. https://doi.org/10.1186/1476-4598-13-186
  51. Petersen K J, Goodson H V, Arthur A L, Luxton G W, Houdusse A, and Titus M A (2016) MyTH4-FERM myosins have an ancient and conserved role in filopod formation. Proc. Natl. Acad. Sci. U. S. A. 113, E8059-E8068. https://doi.org/10.1073/pnas.1615392113
  52. Plantard L, Arjonen A, Lock J G, Nurani G, Ivaska J, and Stromblad S (2010) PtdIns(3,4,5)P(3) is a regulator of myosin-X localization and filopodia formation. J. Cell Sci. 123, 3525-3534. https://doi.org/10.1242/jcs.069609
  53. Rhoads A R and Friedberg F (1997) Sequence motifs for calmodulin recognition. FASEB J. 11, 331-340. https://doi.org/10.1096/fasebj.11.5.9141499
  54. Ricca B L and Rock R S (2010) The stepping pattern of myosin X is adapted for processive motility on bundled actin. Biophys. J. 99, 1818-1826. https://doi.org/10.1016/j.bpj.2010.06.066
  55. Rogers M S and Strehler E E (2001) The tumor-sensitive calmodulin-like protein is a specific light chain of human unconventional myosin X. J. Biol. Chem. 276, 12182-12189. https://doi.org/10.1074/jbc.M010056200
  56. Ropars V, Yang Z, Isabet T, Blanc F, Zhou K, Lin T, Liu X, Hissier P, Samazan F, Amigues B, Yang E D, Park H, Pylypenko O, Cecchini M, Sindelar C V, Sweeney H L, and Houdusse A (2016) The myosin X motor is optimized for movement on actin bundles. Nat. Commun. 7, 12456. https://doi.org/10.1038/ncomms12456
  57. Sakai T, Jung H S, Sato O, Yamada M D, You D J, Ikebe R, and Ikebe M (2015) Structure and regulation of the movement of human myosin VIIA. J. Biol. Chem. 290, 17587-17598. https://doi.org/10.1074/jbc.M114.599365
  58. Sakai T, Umeki N, Ikebe R, and Ikebe M (2011) Cargo binding activates myosin VIIA motor function in cells. Proc. Natl. Acad. Sci. U. S. A. 108, 7028-7033. https://doi.org/10.1073/pnas.1009188108
  59. Saltel F, Daubon T, Juin A, Ganuza I E, Veillat V, and Genot E (2011) Invadosomes: intriguing structures with promise. Eur. J. Cell Biol. 90, 100-107. https://doi.org/10.1016/j.ejcb.2010.05.011
  60. Sato O, Jung H S, Komatsu S, Tsukasaki Y, Watanabe T M, Homma K, and Ikebe M (2017) Activated full-length myosin-X moves processively on filopodia with large steps toward diverse two-dimensional directions. Sci. Rep. 7, 44237. https://doi.org/10.1038/srep44237
  61. Sellers J R and Knight P J (2007) Folding and regulation in myosins II and V. J. Muscle Res. Cell Motil. 28, 363-370. https://doi.org/10.1007/s10974-008-9134-0
  62. Sun Y, Ai X, Shen S, and Lu S (2015) NF-kappaB-mediated miR-124 suppresses metastasis of non-small-cell lung cancer by targeting MYO10. Oncotarget 6, 8244-8254.
  63. Sun Y, Sato O, Ruhnow F, Arsenault M E, Ikebe M, and Goldman Y E (2010) Single-molecule stepping and structural dynamics of myosin X. Nat. Struct. Mol. Biol. 17, 485-491. https://doi.org/10.1038/nsmb.1785
  64. Svitkina T M and Borisy G G (1999) Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol. 145, 1009-1026. https://doi.org/10.1083/jcb.145.5.1009
  65. Svitkina T M, Bulanova E A, Chaga O Y, Vignjevic D M, Kojima S, Vasiliev J M, and Borisy G G (2003) Mechanism of filopodia initiation by reorganization of a dendritic network. J. Cell Biol. 160, 409-421. https://doi.org/10.1083/jcb.200210174
  66. Takagi Y, Farrow R E, Billington N, Nagy A, Batters C, Yang Y, Sellers J R, and Molloy J E (2014) Myosin-10 produces its power-stroke in two phases and moves processively along a single actin filament under low load. Proc. Natl. Acad. Sci. U. S. A. 111, E1833-1842. https://doi.org/10.1073/pnas.1320122111
  67. Tan J L, Ravid S, and Spudich J A (1992) Control of nonmuscle myosins by phosphorylation. Annu. Rev. Biochem. 61, 721-759. https://doi.org/10.1146/annurev.bi.61.070192.003445
  68. Tasca A, Astleford K, Lederman A, Jensen E D, Lee B S, Gopalakrishnan R, and Mansky K C (2017) Regulation of osteoclast differentiation by myosin X. Sci. Rep. 7, 7603. https://doi.org/10.1038/s41598-017-07855-9
  69. Tokuo H and Ikebe M (2004) Myosin X transports Mena/VASP to the tip of filopodia. Biochem. Biophys. Res. Commun. 319, 214-220. https://doi.org/10.1016/j.bbrc.2004.04.167
  70. Tokuo H, Mabuchi K, and Ikebe M (2007) The motor activity of myosin-X promotes actin fiber convergence at the cell periphery to initiate filopodia formation. J. Cell Biol. 179, 229-238. https://doi.org/10.1083/jcb.200703178
  71. Trybus K M (1991) Regulation of smooth muscle myosin. Cell Motil. Cytoskeleton 18, 81-85. https://doi.org/10.1002/cm.970180202
  72. Umeki N, Jung H S, Sakai T, Sato O, Ikebe R, and Ikebe M (2011) Phospholipid-dependent regulation of the motor activity of myosin X. Nat. Struct. Mol. Biol. 18, 783-788. https://doi.org/10.1038/nsmb.2065
  73. Umeki N, Jung H S, Watanabe S, Sakai T, Li X D, Ikebe R, Craig R, and Ikebe M (2009) The tail binds to the head-neck domain, inhibiting ATPase activity of myosin VIIA. Proc. Natl. Acad. Sci. U. S. A. 106, 8483-8488. https://doi.org/10.1073/pnas.0812930106
  74. Wan H Y, Li Q Q, Zhang Y, Tian W, Li Y N, Liu M, Li X, and Tang H (2014) MiR-124 represses vasculogenic mimicry and cell motility by targeting amotL1 in cervical cancer cells. Cancer Lett. 355, 148-158. https://doi.org/10.1016/j.canlet.2014.09.005
  75. Wang F, Thirumurugan K, Stafford W F, Hammer J A 3rd, Knight P J, and Sellers J R (2004) Regulated conformation of myosin V. J. Biol. Chem. 279, 2333-2336. https://doi.org/10.1074/jbc.C300488200
  76. Watanabe T M, Tokuo H, Gonda K, Higuchi H, and Ikebe M (2010) Myosin-X induces filopodia by multiple elongation mechanism. J. Biol. Chem. 285, 19605-19614. https://doi.org/10.1074/jbc.M109.093864
  77. Weber K L, Sokac A M, Berg J S, Cheney R E, and Bement W M (2004) A microtubule-binding myosin required for nuclear anchoring and spindle assembly. Nature 431, 325-329. https://doi.org/10.1038/nature02834
  78. Wei Z, Yan J, Lu Q, Pan L, and Zhang M (2011) Cargo recognition mechanism of myosin X revealed by the structure of its tail MyTH4-FERM tandem in complex with the DCC P3 domain. Proc. Natl. Acad. Sci. U.S. A. 108, 3572-3577. https://doi.org/10.1073/pnas.1016567108
  79. Welch M D and Mullins R D (2002) Cellular control of actin nucleation. Annu. Rev. Cell Dev. Biol. 18, 247-288. https://doi.org/10.1146/annurev.cellbio.18.040202.112133
  80. Wolenski J S (1995) Regulation of calmodulin-binding myosins. Trends Cell Biol. 5, 310-316. https://doi.org/10.1016/S0962-8924(00)89053-4
  81. Wuhr M, Mitchison T J, and Field C M (2008) Mitosis: new roles for myosin-X and actin at the spindle. Curr. Biol. 18, R912-R914. https://doi.org/10.1016/j.cub.2008.08.043
  82. Yu H, Wang N, Ju X, Yang Y, Sun D, Lai M, Cui L, Sheikh M A, Zhang J, Wang X, and Zhu X (2012) PtdIns (3,4,5) P3 recruitment of Myo10 is essential for axon development. PLoS One 7, e36988. https://doi.org/10.1371/journal.pone.0036988
  83. Zhang H, Berg J S, Li Z, Wang Y, Lang P, Sousa A D, Bhaskar A, Cheney R E, and Stromblad S (2004) Myosin-X provides a motor-based link between integrins and the cytoskeleton. Nat. Cell Biol. 6, 523-531. https://doi.org/10.1038/ncb1136
  84. Zhu X J, Wang C Z, Dai P G, Xie Y, Song N N, Liu Y, Du Q S, Mei L, Ding Y Q, and Xiong W C (2007) Myosin X regulates netrin receptors and functions in axonal path-finding. Nat. Cell Biol. 9, 184-192. https://doi.org/10.1038/ncb1535