• Title/Summary/Keyword: cellular ATP

Search Result 190, Processing Time 0.024 seconds

Chromatin-remodeling Factor INI1/hSNF5/BAF47 Is Involved in Activation of the Colony Stimulating Factor 1 Promoter

  • Pan, Xuefang;Song, Zhaoxia;Zhai, Lei;Li, Xiaoyun;Zeng, Xianlu
    • Molecules and Cells
    • /
    • v.20 no.2
    • /
    • pp.183-188
    • /
    • 2005
  • INI1/hSNF5/BAF47 is a core component of the hSWI/ SNF ATP-dependent chromatin remodeling complex, and it has been implicated in regulating gene expression, cell division and tumorigenesis. We investigated whether INI1/hSNF5/BAF47 functions in activation of the colony stimulating factor 1 (CSF1) promoter in HeLa cells. Overexpression of INI1/hSNF5/BAF47 promoted CSF1 transcription, and siRNA targeting INI1/hSNF5/ BAF47 (siINI1) strongly inhibited the activity of the CSF1 promoter. We demonstrated that all conserved domains of INI1/hSNF5/BAF47 are needed for CSF1 transcription. ChIP experiment showed that INI1/ hSNF5/BAF47 is recruited to the region of the CSF1 promoter. Taken together, these results indicate that INI1/hSNF5/BAF47 is involved in activation of the CSF1 promoter.

Inflammasomes: Molecular Regulation and Implications for Metabolic and Cognitive Diseases

  • Choi, Alexander J.S.;Ryter, Stefan W.
    • Molecules and Cells
    • /
    • v.37 no.6
    • /
    • pp.441-448
    • /
    • 2014
  • Inflammasomes are specialized signaling platforms critical for the regulation of innate immune and inflammatory responses. Various NLR family members (i.e., NLRP1, NLRP3, and IPAF) as well as the PYHIN family member AIM2 can form inflammasome complexes. These multiprotein complexes activate inflammatory caspases (i.e., caspase-1) which in turn catalyze the maturation of select pro-inflammatory cytokines, including interleukin (IL)-$1{\beta}$ and IL-18. Activation of the NLRP3 inflammasome typically requires two initiating signals. Toll-like receptor (TLR) and NOD-like receptor (NLR) agonists activate the transcription of pro-inflammatory cytokine genes through an NF-${\kappa}B$-dependent priming signal. Following exposure to extracellular ATP, stimulation of the P2X purinoreceptor-7 ($P2X_7R$), which results in $K^+$ efflux, is required as a second signal for NLRP3 inflammasome formation. Alternative models for NLRP3 activation involve lysosomal destabilization and phagocytic NADPH oxidase and /or mitochondria-dependent reactive oxygen species (ROS) production. In this review we examine regulatory mechanisms that activate the NLRP3 inflammasome pathway. Furthermore, we discuss the potential roles of NLRP3 in metabolic and cognitive diseases, including obesity, type 2 diabetes mellitus, Alzheimer's disease, and major depressive disorder. Novel therapeutics involving inflammasome activation may result in possible clinical applications in the near future.

Cellular and Biochemical Mechanism of Perinatal Hypoxic-Ischemic Brain Injury (주산기 저산소-허혈 뇌손상의 세포 생화학적 기전)

  • Chang, Young Pyo
    • Clinical and Experimental Pediatrics
    • /
    • v.45 no.5
    • /
    • pp.560-567
    • /
    • 2002
  • 주산기 뇌손상은 주로 급격한 저산소-허혈 손상에 의하는데 급격한 산소 공급의 차단은 oxidative phosphorylation을 정지 시켜서 뇌대사를 위한 에너지 공급이 차단되게 된다. 에너지 공급이 차단된 뇌세포는 뇌세포막에서 세포 내외의 이온 농도 차를 유지시키던 ATP-dependent $Na^{+}-K^{+}$ pump의 기능이 정지 되고, 세포 내외의 농도 차에 따라 $Na^{+}$, $Cl^{+}$, $Ca^{{+}{+}}$의 대규모 세포 내로 이동이 일어난다. 세포 내로 calcium 이온의 이동은 glutamate 수용체의 활성화에 의해서도 일나는데, 세포 내 calcium 이온의 증가는 protease, lipase, nuclease 등을 활성화 시켜 세포를 사망에 이르게 하는 연속적이고 다양한 생화학적 반응을 일으키게 된다. Glutamate는 대표적인 신경 전달 물질인데 저산소-허혈 손상 시 glutamate 수용체의 지나친 흥분은 미성숙 뇌에 뇌손상을 유발하는데, NMDA 또는 non-NMDA 수용체와 복합체를 형성하고 있는 calcium 이동 통로를 활성화 시켜 세포 내 calcium 이온을 증가시키고, 그 외에 metabotropic recetor는 G-protein의 활성화 등을 통해 뇌손상을 유발하는 다양한 생화학적 반응을 매개한다. 저산소-허혈 손상 후 재산소화와 재관류가 일어나면서 뇌세포의 지연성 사망(secondary neuronal death)이 일어나는데 이는 초기 손상 후 뒤이어 일어나는 다양한 생화학적 반응에 의하는데 다량의 산소 자유기 발생, nitric oxide의 생성, 염증 반응과 싸이토카인, 신경전도 물질의 과흥분 등이 관여하며, 신경 세포 사망은 세포괴사(necrosis)뿐 아니라 일부는 세포 사멸(apoptosis)로 알려진 의도된 세포 사망(programmed cell death)에 의한 것으로 생각되고 있다(Fig. 2).

Identification and Cloning of the ClpB Gene in Psychromonas arctica by Inverse PCR and Cassette PCR Technology

  • Choi, Ae-Ran;Na, Joo-Mi;Sung, Min-Sun;Im, Ha-Na;Lee, Kyung-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.887-890
    • /
    • 2010
  • The family of ClpB protein is a molecular chaperone which protects cellular proteins from being aggregated upon exposure to severe environmental stresses in association with DnaK/DanJ/GrpE in the ATP-dependent manner. In a psychrophilic bacterium which survives at a subzero temperature, any functional role of cold-active ClpB protein can be rather crucial. In order to identify a ClpB encoding gene from a cold-adapted bacterium whose genome sequence has not been fully discovered, we have employed a series of PCR technologies, including a gradient PCR with homologous primers, an inverse PCR and a cassette PCR. The full sequence of PaclpB gene was successfully identified and compared with those of other psychrophilic species. We have further cloned the gene in E.coli expression systems and were able to induce PaClpB protein expression by IPTG, which help us understand a molecular mechanism for survival against extremely cold environments.

Temporal changes in mitochondrial activities of rat heart after a single injection of iron, including increased complex II activity

  • Kim, Mi-Sun;Song, Eun-Sook
    • Animal cells and systems
    • /
    • v.14 no.2
    • /
    • pp.91-98
    • /
    • 2010
  • Male rats were given a single injection of iron, and temporal changes in iron content and iron-induced effects were examined in heart cellular fractions. Over a period of 72 h, the contents of total and labile iron, reactive oxygen species, and NO in tissue homogenate, nuclear debris, and postmitochondrial fractions were mostly constant, but in mitochondria they continuously increased. An abrupt decrease in membrane potential and NAD(P)H at 12 h was also found in mitochondria. The respiratory control ratio was reduced slowly with a slight recovery at 72 h, suggesting uncoupling by iron.While the ATP content of tissue homogenate decreased steadily until 72 h, it showed a prominent increase in mitochondria at 12 h. Total iron and calcium concentration also progressively increased in mitochondria over 72 h. Enzyme activity of the oxidative phosphorylation system was significantly altered by iron injection: activities of complexes I, III, and IV were reduced considerably, but complex II activity and the ATPase activity of complex V were enhanced. A reversal of activity in complexes I and II at 12 h suggested reverse electron transfer due to iron overload. These results support the argument that mitochondrial activities including oxidative phosphorylation are modulated by excessive iron.

Action of Mitochondrial Substrates on Neuronal Excitability in Rat Substantia Gelatinosa Neurons

  • Lee, Hae In;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • v.42 no.2
    • /
    • pp.55-61
    • /
    • 2017
  • Recent studies indicate that mitochondria are an important source of reactive oxygen species (ROS) in the spinal dorsal horn. In our previous study, application of malate, a mitochondrial electron transport complex I substrate, induced a membrane depolarization, which was inhibited by pretreatment with ROS scavengers. In the present study, we used patch clamp recording in the substantia geletinosa (SG) neurons of spinal slices, to investigate the cellular mechanism of mitochondrial ROS on neuronal excitability. DNQX (an AMPA receptor antagonist) and AP5 (an NMDA receptor antagonist) decreased the malate-induced depolarization. In an external calcium free solution and addition of tetrodotoxin (TTX) for blockade of synaptic transmission, the malate-induced depolarization remained unchanged. In the presence of DNQX, AP5 and AP3 (a group I metabotropic glutamate receptor (mGluR) antagonist), glutamate depolarized the membrane potential, which was suppressed by PBN. However, oligomycin (a mitochondrial ATP synthase inhibitor) or PPADS (a P2 receptor inhibitor) did not affect the substrates-induced depolarization. These results suggest that mitochondrial substrate-induced ROS in SG neuron directly acts on the postsynaptic neuron, therefore increasing the ion influx via glutamate receptors.

Characterization of the Complete Mitochondrial Genome of Diphyllobothrium nihonkaiense (Diphyllobothriidae: Cestoda), and Development of Molecular Markers for Differentiating Fish Tapeworms

  • Kim, Kyu-Heon;Jeon, Hyeong-Kyu;Kang, Seokha;Sultana, Tahera;Kim, Gil Jung;Eom, Keeseon S.;Park, Joong-Ki
    • Molecules and Cells
    • /
    • v.23 no.3
    • /
    • pp.379-390
    • /
    • 2007
  • We sequenced and characterized the complete mitochondrial genome of the Japanese fish tapeworm D. nihonkaiense. The genome is a circular-DNA molecule of 13607 bp (one nucleotide shorter than that of D. latum mtDNA) containing 12 protein-coding genes (lacking atp8), 22 tRNA genes and two rRNA genes. Gene order and genome content are identical to those of the other cestodes reported thus far, including its congener D. latum. The only exception is Hymenolepis diminuta in which the positions of trnS2 and trnL1 are switched. We tested a PCR-based molecular assay designed to rapidly and accurately differentiate between D. nihonkaiense and D. latum using species-specific primers based on a comparison of their mtDNA sequences. We found the PCR-based system to be very reliable and specific, and suggest that PCR-based identification methods using mtDNA sequences could contribute to the study of the epidemiology and larval ecology of Diphyllobothrium species.

Up-Regulation of RANK Expression via ERK1/2 by Insulin Contributes to the Enhancement of Osteoclast Differentiation

  • Oh, Ju Hee;Lee, Na Kyung
    • Molecules and Cells
    • /
    • v.40 no.5
    • /
    • pp.371-377
    • /
    • 2017
  • Despite the importance of the receptor activator of nuclear factor (NF)-kappaB ligand (RANKL)-RANK signaling mechanisms on osteoclast differentiation, little has been studied on how RANK expression is regulated or what regulates its expression during osteoclastogenesis. We show here that insulin signaling increases RANK expression, thus enhancing osteoclast differentiation by RANKL. Insulin stimulation induced RANK gene expression in time- and dose-dependent manners and insulin receptor shRNA completely abolished RANK expression induced by insulin in bone marrow-derived monocyte/macrophage cells (BMMs). Moreover, the addition of insulin in the presence of RANKL promoted RANK expression. The ability of insulin to regulate RANK expression depends on extracellular signal-regulated kinase 1/2 (ERK1/2) since only PD98059, an ERK1/2 inhibitor, specifically inhibited its expression by insulin. However, the RANK expression by RANKL was blocked by all three mitogen-activated protein (MAP) kinases inhibitors. The activation of RANK increased differentiation of BMMs into tartrate-resistant acid phosphatase-positive ($TRAP^+$) osteoclasts as well as the expression of dendritic cell-specific transmembrane protein (DC-STAMP) and d2 isoform of vacuolar ($H^+$) ATPase (v-ATPase) Vo domain (Atp6v0d2), genes critical for osteoclastic cell-cell fusion. Collectively, these results suggest that insulin induces RANK expression via ERK1/2, which contributes to the enhancement of osteoclast differentiation.

Metabolic Engineering of Saccharomyces cerevisiae for Redox Balance of Xylose Fermentation

  • Kim, Soo Rin;Jin, Yong-Su
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.4
    • /
    • pp.199-202
    • /
    • 2014
  • The bioconversion of cellulosic biomass hydrolyzates consisting mainly of glucose and xylose requires the use of engineered Saccharomyces cerevisiae expressing a heterologous xylose pathway. However, there is concern that a fungal xylose pathway consisting of NADPH-specific xylose reductase (XR) and $NAD^+$-specific xylitol dehydrogenase (XDH) may result in a cellular redox imbalance. However, the glycerol biosynthesis and glycerol degradation pathways of S. cerevisiae, termed here as the glycerol cycle, has the potential to balance the cofactor requirements for xylose metabolism, as it produces NADPH by consuming NADH at the expense of one mole of ATP. Therefore, this study tested if the glycerol cycle could improve the xylose metabolism of engineered S. cerevisiae by cofactor balancing, as predicted by an in-silico analysis using elementary flux mode (EFM). When the GPD1 gene, the first step of the glycerol cycle, was overexpressed in the XR/XDH-expressing S. cerevisiae, the glycerol production significantly increased, while the xylitol and ethanol yields became negligible. The reduced xylitol yield suggests that enough $NAD^+$ was supplied for XDH by the glycerol cycle. However, the GPD1 overexpression completely shifted the carbon flux from ethanol to glycerol. Thus, moderate expression of GPD1 may be necessary to achieve improved ethanol production through the cofactor balancing.

Cellular and Biochemical Alterations in L6 Myoblast Cells Induced by 6-Aminonicotinamide

  • Jang, Min-Young;Kim, Sun-Jung;Shin, Sook;Park, In-Kook
    • Animal cells and systems
    • /
    • v.11 no.1
    • /
    • pp.17-22
    • /
    • 2007
  • The effects of antimetabolite 6-AN (6-amino-nicotinamide) on viability and morphology of L6 myoblast cells have been investigated. 6-AN ($100{\mu}M$) induced a time-dependent decrease in cell viability with respect to the untreated control cells. Following 6-AN administration the viability rate started to decline sharply, reaching about 23% of the untreated control cells at 48 h. Inverted phase-contrast microscopy revealed that 6-AN caused characteristic morphological changes such as irregularly elongated and stellate shape of cells, round-shaped nucleus, cytoplasmic vacuolization, irregular cell arrangements and formation of large spaces among cell clusters. The concentrations of ATP and $NAD^{+}$ in the 6-AN treated cells were significantly lower (p < 0.01) than those of the untreated control cells. In contrast, the concentration of AMP was significantly increased by the 6-AN treatment. Activities of catalase, superoxide dismutase and glutathione peroxidase in 6-AN treated cells were significantly higher (p < 0.01) than those of the untreated control cells. The activities of glyceraldehyde-3-phosphate dehydrogenase in 6-AN treated cells were significantly lower (p < 0.01) than those of the untreated control cells. The results suggest that 6-AN caused marked reduction of cell viability and alterations of some important metabolites and enzymes.