• Title/Summary/Keyword: cell volume

Search Result 1,750, Processing Time 0.027 seconds

The Transfection of Caldesmon DNA into Primary Cultured Rat Aortic Vascular Smooth Muscle

  • Choi, Woong;Ahn, Hee-Yul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.6
    • /
    • pp.597-603
    • /
    • 1999
  • Caldesmon (CaD), one of microfilament-associated proteins, plays a key role in microfilament assembly in mitosis. We have investigated the effects of overexpression of the high molecular weight isoform of CaD (h-CaD) on the physiology of vascular smooth muscle cells (VSMCs). Rat aortic VSMCs were stably transfected with plasmids carrying a full length human h-CaD cDNA under control of cytomegalovirus promoter. The majority of the overexpressed h-CaD appears to be localized predominantly on cytoskeleton structures as determined by detergent lysis. The overexpression of h-CaD, however, does not decrease the level of endogenous low molecular weight isoform of CaD. h-CaD overexpressing VSMCs (h-CaD/VSMCs) show a decreased growth rate than that of vector-only transfected cells when determined by $[^3H]thymidine$ uptake and cell counting after fetal bovine serum (FBS) stimulation. h-CaD/VSMCs were smaller than vector-transfected cells by 18% in cell diameter. These data suggest that overexpression of h-CaD can inhibit the poliferation and the cell volume of VSMCs stimulated by growth factors and that the gene therapy with h-CaD may be helpful to prevent the conditions associated with hypertrophy and/or hyperplasia of VSMCs after arterial injuries.

  • PDF

Numerical Simulation of Dam-Break Problem with Cut-cell Method (분할격자를 이용한 댐붕괴파의 수치해석)

  • Kim, Hyung-Jun;Yoo, Je-Seon;Lee, Seung-Oh;Cho, Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1752-1756
    • /
    • 2008
  • A simple, accurate and efficient mesh generation technique, the cut-cell method, is able to represent an arbitrarily complex geometry. Both structured and unstructured grid meshes are used in this method. First, the numerical domain is constructed with regular Cartesian grids as a background grid and then the solid boundaries or bodies are cut out of the background Cartesian grids. As a result, some boundary cells can be contained two numerical conditions such as the flow and solid conditions, where the special treatment is needed to simulate such physical characteristics. The HLLC approximate Riemann solver, a Godunov-type finite volume method, is employed to discretize the advection terms in the governing equations. Also, the TVD-WAF method is applied on the Cartesian cut-cell grids to stabilize numerical results. Present method is validated for the rectangular dam break problems. Initially, a conventional grid is constructed with the Cartesian regular mesh only and then applied to the dam-break flow simulation. As a comparative simulation, a cut-cell grids are applied to represent the flow domain rotated with arbitrary angles. Numerical results from this study are compared with the results from the case of the Cartesian regular mesh only. A good agreement is achieved with other numerical results presented in the literature.

  • PDF

Comparison of mastoid air cell volume in patients with or without a pneumatized articular tubercle

  • Adisen, Mehmet Zahit;Aydogdu, Merve
    • Imaging Science in Dentistry
    • /
    • v.52 no.1
    • /
    • pp.27-32
    • /
    • 2022
  • Purpose: The aim of this study was to compare mastoid air cell volumes in patients with or without a pneumatized articular tubercle (PAT) on cone-beam computed tomography (CBCT) images. Materials and Methods: The CBCT images of 224 patients were retrospectively analyzed for the presence of PAT. The Digital Imaging and Communications in Medicine data of 30 patients with PAT and 30 individuals without PAT were transferred to 3D Doctor Software. Mastoid air cell volumes were measured using semi-automatic segmentation on axial sections. Data were analyzed using SPSS version 20.0. Results: The patients with PAT and those without PAT had a mean mastoid volume of 6.31±2.86 cm3 and 3.25±1.99 cm3, respectively. There were statistically significant differences in mastoid air cell volumes between patients with and without PAT regardless of sex and mastoid air cell side (P<0.05). Conclusion: The detection of PAT on routine dental radiographic examinations might be a potential prognostic factor that could be used to detect extensive pneumatization in the temporal bone. Clinicians should be aware that there may be widespread pneumatization of mastoid air cells in patients in whom PAT is detected. Advanced imaging should be performed in these cases, and possible complications due to surgical interventions should be considered.

MULTIGRID CONVERGENCE THEORY FOR FINITE ELEMENT/FINITE VOLUME METHOD FOR ELLIPTIC PROBLEMS:A SURVEY

  • Kwak, Do-Y.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.12 no.2
    • /
    • pp.69-79
    • /
    • 2008
  • Multigrid methods finite element/finite volume methods and their convergence properties are reviewed in a general setting. Some early theoretical results in simple finite element methods in variational setting method are given and extension to nonnested-noninherited forms are presented. Finally, the parallel theory for nonconforming element[13] and for cell centered finite difference methods [15, 23] are discussed.

  • PDF

Validation of Urine Volume Evaluation by Hydraulic Pressure Measurement (압력 측정에 의한 요량 계측의 유용성 분석)

  • Kim, Kyung-Ah;Choi, Sung-Soo;Lee, In-Kwang;Park, Kyung-Soon;Kim, Wun-Jae;Lee, Tae-Soo;Cha, Eun-Jong
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.4
    • /
    • pp.577-584
    • /
    • 2007
  • Uroflowmetry is non-invasive and easily performed to diagnose benign prostatic hypertrophy(BPH) frequent in aged men. Weight change during urination is usually measured to estimate the urinary flow rate by a load cell, but sensitive to any impacts against the bottom of the container, leading to unnecessary noise generation. Moreover, load cells are relatively expensive raising the production cost. The present study proposed a new technique, measuring hydraulic pressure on the bottom of the urine container to evaluate the urinary volume. Low cost pressure transducer enabled almost perfectly linear relationship between the urine volume and the hydraulic pressure. During both the simulated and human urination experiments, variance of the pressure signal was more than 50% smaller than the weight signal acquired by a load cell, which demonstrated that the impact noise was decreased to a great degree by pressure compared to weight measurement.

Moderate hypofractionated image-guided thoracic radiotherapy for locally advanced node-positive non-small cell lung cancer patients with very limited lung function: a case report

  • Manapov, Farkhad;Roengvoraphoj, Olarn;Li, Minglun;Eze, Chukwuka
    • Radiation Oncology Journal
    • /
    • v.35 no.2
    • /
    • pp.180-184
    • /
    • 2017
  • Patients with locally advanced lung cancer and very limited pulmonary function (forced expiratory volume in 1 second $[FEV1]{\leq}1L$) have dismal prognosis and undergo palliative treatment or best supportive care. We describe two cases of locally advanced node-positive non-small cell lung cancer (NSCLC) patients with very limited lung function treated with induction chemotherapy and moderate hypofractionated image-guided radiotherapy (Hypo-IGRT). Hypo-IGRT was delivered to a total dose of 45 Gy to the primary tumor and involved lymph nodes. Planning was based on positron emission tomography-computed tomography (PET/CT) and four-dimensional computed tomography (4D-CT). Internal target volume (ITV) was defined as the overlap of gross tumor volume delineated on 10 phases of 4D-CT. ITV to planning target volume margin was 5 mm in all directions. Both patients showed good clinical and radiological response. No relevant toxicity was documented. Hypo-IGRT is feasible treatment option in locally advanced node-positive NSCLC patients with very limited lung function ($FEV1{\leq}1L$).

Effective Longitudinal Shear Modulus of Continuous Fiber-Reinforced 2-Phase Composites (연속섬유가 보강된 2상 복합재료의 종방향 전단계수 해석)

  • Lee, Dong-Ju;Jeong, Tae-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2770-2781
    • /
    • 1996
  • Longitudinal shear modulus of continuous fiber reinforced 2-phase composites is predicted by theoretical and numerical analysis methods. In this paper, circular, hexagonal and rectangular shapes of reinforced fiber are considered using unit cell concept. And fiber array is regular rectangular and hexagonal fiber arrangement. Longitudinal shear modulus is a function of fiber distribution pattern and fiber volume change. It is found that the rectangular array has a higher longitudinal shear modulus than the hexagonal one. Also, the rectangular fiber shape in lower fiber volume fraction and the circular fiber shape in higher fiber volume fraction show the higher longitudinal shear modulus. And it has been found that the theoretical and numerical predictions of the longitudinal shear modulus give a good agreement with the experimental data at lower fiber volume fraction. Both the distance and stress transfer between the fibers are discussed as the major determing factors.

Electrophoretic Tissue Clearing and Labeling Methods for Volume Imaging of Whole Organs

  • Kim, Dai Hyun;Ahn, Hyo Hyun;Sun, Woong;Rhyu, Im Joo
    • Applied Microscopy
    • /
    • v.46 no.3
    • /
    • pp.134-139
    • /
    • 2016
  • Detailed structural and molecular imaging of intact organs has incurred academic interest because the associated technique is expected to provide innovative information for biological investigation and pathological diagnosis. The conventional methods for volume imaging include reconstruction of images obtained from serially sectioned tissues. This approach requires intense manual work which involves inevitable uncertainty and much time to assemble the whole image of a target organ. Recently, effective tissue clearing techniques including CLARITY and ACT-PRESTO have been reported that enables visualization of molecularly labeled structures within intact organs in three dimensions. The central principle of the methods is transformation of intact tissue into an optically transpicuous and macromolecule permeable state without loss of intrinsic structural integrity. The rapidly evolving protocols enable morphological analysis and molecular labeling of normal and pathological characteristics in large assembled biological systems with single-cell resolution. The deep tissue volume imaging will provide fundamental information about mutual interaction among adjacent structures such as connectivity of neural circuits; meso-connectome and clinically significant structural alterations according to pathologic mechanisms or treatment procedures.

Measurement and preliminary analysis of P-$\upsilon$-T-$\chi$ relation for $CO_2$/oil systems ($CO_2$/오일 시스템에서 P-$\upsilon$-T-$\chi$ 관계의 측정 및 예비 해석)

  • You, Han-Yeon;Park, Kyoung-Kuhn;Kang, Byung-Ha
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.652-657
    • /
    • 2007
  • This paper is an interim report on the investigation of thermodynamic properties of $CO_2$/oil mixture refrigerant. First, liquid density of POE (poly-ol ester) and PAG (poly alkylene glycol) were measured and expressed as a function of temperature. Then, a solubility equation was developed which enables us to calculate the weight fraction of $CO_2$ for the mixture in a liquid state. An experimental apparatus with a cell was constructed to measure P-$\upsilon$-T-$\chi$ data for $CO_2$/oil mixture. The volume of the cell was determined using a certain formula considering change in volume as a function of temperature and pressure. Then, experimental data were obtained over the temperatures $40^{\circ}C$, $50^{\circ}C$, $60^{\circ}C$, $70^{\circ}C$ and $80^{\circ}C$ with various mole fractions. Finally, assuming a primitive model of ideal gas, the volume of $CO_2$/oil mixture was predicted with a relatively larger error of 5.05% for $CO_2$/PAG and 8.81% for $CO_2$/POE. The volume of $CO_2$/oil mixtures would be better predicted using an appropriate equation of state, of which results will be reported soon.

  • PDF

VOLUME CAPTURING METHOD USING UNSTRUCTURED GRID SYSTEM FOR NUMERICAL ANALYSIS OF MULTIPHASE FLOWS (다상유동 해석을 위한 비정렬격자계를 사용한 체적포착법)

  • Myong, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.201-210
    • /
    • 2009
  • A volume capturing method using unstructured grid system for numerical analysis of multiphase flows is introduced in the present paper. This method uses an interface capturing method (CICSAM) in a volume of fluid(VOF) scheme for phase interface capturing. The novelty of CICSAM lies in the adaptive combination of high resolution discretization scheme which ensures the preservation of the sharpness and shape of the interface while retaining boundedness of the field, and no explicit interface reconstruction which is perceived to be difficult to implement on unstructured grid system. Several typical test cases for multiphase flows are presented, which are simulated by an in-house solution code(PowerCFD). This code employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with CICSAM. It is found that the present method simulates efficiently and accurately complex free surface flows such as multiphase flows.

  • PDF