• Title/Summary/Keyword: cell protective

Search Result 1,731, Processing Time 0.026 seconds

CFD-based Flow Simulation Study of Fuel Cell Protective Gas (CFD를 활용한 연료전지 모듈 보호가스 유동 연구)

  • Kwon, Kiwook;Lim, Jongkoo;Park, Jongcheol;Shin, Hyun Khil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.86.1-86.1
    • /
    • 2011
  • To improve the safety, the fuel cell operate inside a pressurized enclosure which contains inert gas so called protective gas. The protective gas not only prevents the mixture of hydrogen and oxygen, but also removes the water in the vessel with the condenser. This study presents the details of the flow optimization in order to reduce the humidity in the fuel cell housing. The protective gas flow in the fuel cell container is studied by Computational Fluid Dynamics(CFD) simulations. This study focuses on optimizing the geometry of an protective gas circulation system in fuel cell module to reduce the humidity in the vessel. CFD analysis was carried out for an existing model to understand the flow behavior through the fuel cell system. Based on existing model CFD results, geometrical changes like inlet placement, optimization of outlet size, modification of fuel cell module system are carried out, to improve the flow characteristics. The CFD analysis of the optimized model is again carried out and the results show good improvement in protective gas flow behavior.

  • PDF

Protective Effect of Metabolized Chungpesagan-tang on Hypoxia/Reperfusion Induced-PC12 Cell Damage (저산소/재관류로부터 청폐사간탕의 PC12 세포 보호 효과)

  • Soh, Yun-Jo
    • Korean Journal of Pharmacognosy
    • /
    • v.36 no.2 s.141
    • /
    • pp.151-157
    • /
    • 2005
  • This research was performed to investigate the protective effect of Chungpesagan-tang (CST) from hypoxia/reperfusion induced-PC12 cell damage. To elucidate the mechanism of the protective effect of CST, cell viability, changes in activities of superoxide dismutase, glutathione peroxidase, catalase, caspase 3 and the production of malondialdehyde were observed after treating PC12 cells with CST which was metabolized by rat liver homogenate. Pretreatment of CST with liver homogenate appeared to increase its protective effect against hypoxia/reperfusion insult. The result showed that CST exhibited the highest protective effect against hypoxia/reperfusion at the dose of $1\;{\mu}g/ml$ in PC12 cells, probably by recovering the redox enzyme activities and MDA to control level.

Protective Effects of Alpinia katsumadai Extract Against Oxidative Stress

  • Lee, Eul-Jae;Kim, Jeong-Hee
    • International Journal of Oral Biology
    • /
    • v.36 no.3
    • /
    • pp.149-154
    • /
    • 2011
  • In the present study, total methanol extracts prepared from Alpinia katsumadai showed significant protective effects against the oxidative stress induced by hydrogen peroxide, UV-C or ${\gamma}$-ray irradiation. These protective effects were substantially increased by treatment with 20~100 ${\mu}g$/ml of the extract. The A. katsumadai total methanol preparation was further fractionated into n-hexane, dichloromethane, ethylacetate, n-butanol and water fractions. Among these five fractions, the ethylacetate and butanol fractions of A. katsumadai showed the strongest protective effects against oxidative stress induced by UV-C and ${\gamma}$-ray irradiation. These fractions also showed high DPPH radical scavenging and lipid peroxidation inhibitory activities. In addition, both fractions displayed cell proliferation activation effects, as evidenced by significant increases in colony formation. Our current data thus suggest that the mechanisms underlying the protective effects of A. katsumadai against oxidative damage may include radical scavenging, protection against cell membrane damage and stimulation of cell proliferation.

Cellular Protective Effects and Mechanisms of Kaempferol and Nicotiflorin Isolated from Annona muricata against 1O2-induced Damage (그라비올라로부터 분리된 Kaempferol 및 Nicotiflorin의 1O2으로 유도된 세포손상에 대한 보호 효과와 그 메커니즘)

  • Park, So Hyun;Shin, Hyuk Soo;Lee, Nan Hee;Hong, In Kee;Park, Soo Nam
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.49-55
    • /
    • 2018
  • In this study, we investigated the cellular protective effects and mechanisms of nicotiflorin and its aglycone kaempferol isolated from Annona muricata. The protective effect of these components against $^1O_2$-induced cell damage was also studied by using L-ascorbic acid and (+)-${\alpha}$-tocopherol as controls. Kaempferol exhibited the most potent protective effect, followed by (+)-${\alpha}$-tocopherol and nicotiflorin. L-Ascorbic acid did not exhibit any cellular protective effects. To elucidate the mechanism underlying protective effects, the quenching rate constant of the singlet oxygen, free radical-scavenging activity, ROS-scavenging activity, and uptake ratio of the erythrocyte membrane were measured. The results showed that the cell membrane penetration is a key factor determining the cellular protective effect of kaempferol and its glycoside nicotiflorin. The result from L-ascorbic acid demonstrated that the cellular protective effect of a compound depends on its ability to penetrate the cell membrane and is independent of its antioxidant capacity. In addition, it is suggested that cellular protective effects of kaempferol and (+)-${\alpha}$-tocopherol depend not only on the cell permeability, but also on free radical- and ROS-scavenging activities. These results indicate that the cell permeability and free radical- and ROS- scavenging activities of antioxidants are major factors affecting the protection of cell membranes against the oxidative damage induced by photosensitization reaction.

Protective Effect of Acanthopanax senticosus Extract on Alloxan-induced β-cell Damage

  • Rho, Hye-Won;Lee, Ji-Hyun;Kim, Jong-Suk;Kim, Hyung-Rho;Park, Byung-Hyun;Park, Jin-Woo
    • Preventive Nutrition and Food Science
    • /
    • v.10 no.1
    • /
    • pp.46-51
    • /
    • 2005
  • The protective effect of Acanthopanax senticosus (AS) extract on alloxan-induced pancreatic β-cell damage was investigated in HIT T-15 cells, a Syrian hamster pancreatic β-cell line. Alloxan caused the pancreatic β-cell damage through the generation of reactive oxygen free radicals, increased DNA fragmentation, and decreased cellular NAD/sup +/ levels. The β-cell damage was significantly prevented by the pretreatment with water soluble extract of AS roots. These results suggest that the protective effect of AS extract, on alloxan-induced β-cell damage, is primarily due to the inhibition of the generation of reactive oxygen free radical species (ROS) by alloxan.

Effect of Kamihaengche-tang Plus Yukmijihwang-tang Oxidant-induced Liver Cell injury (Oxidant에 의한 간독성유발에 가미행체엽탕 합 육미지황탕의 효과)

  • 이수행;김우환
    • Journal of Life Science
    • /
    • v.8 no.4
    • /
    • pp.464-471
    • /
    • 1998
  • This study was carried out to determine whether Kamihaengche-tang plus Yukmijihwang-tang (KCYH) exerts the protective effect against oxidant-induced liver cell injury. Cell injurt was estimated by measuring lactate dehydrogenase (LDH) and alanine aminotransferase (ALT) release, and lipid peroxidation was estimated by measuring malondialdehyde, a product of lipid peroxidation in rabbit liver slices. $H_2O_2$increased LDH release which was significantly prevented by 1% KCYHT. The protective effect of KCYH against $H_2O_2$-induced cell injury was dose-dependent in the range of 0.05-1% concentrations. Similary, KCYH inhibited $H_2O_2$ induced lipid peroxidation in a dose-dependent manner. When liver tissuse were exposed to Hg(0.5 mM), ALT activity in the medium and lipid erpoxidation in tissues were markedly increased. These changes were prevented by 1% KCYH. KCHY restored Hg-induced inhibition of cellular GSH content. These result indicate that KCYH exerts the protective effect oxidant-induced liver cell injury, and this effect is attributed to prevented to prevention of lipid peroxidation. These dffects may be due to an increase in concentration of endogenous antioxidants.

  • PDF

HepG2 세포의 산화적 손상에 대한 산삼 추출물의 보호효과 - DNA chip을 이용하여 -

  • Kim, Hyung-Seok;Park, Hee-Soo;Kwon, Ki-Rok
    • Journal of Pharmacopuncture
    • /
    • v.10 no.1 s.22
    • /
    • pp.121-135
    • /
    • 2007
  • Objectives : This study was carried out to examine protective effect of wild ginseng extract on HepG2 human hepatoma cell line against tert-Butyl hydroperoxide (t-BHP)-induced oxidative damage. Methods : To evaluate protective effect of wild ginseng extract against t-BHP induced cytotoxicity, LDH level and activity of glutathione peroxidase and reductase were measured. Gene expression was also measured using DNA microarray. Results : Wild ginseng extract showed a significant protective effect against t-BHP-induced cytotoxicity in HepG2 cell line. It is not, however, related with the activities of glutathione peroxidase and glutathione reductase. Analysis of gene expression using DNA chip, demonstrated that 28 genes were up-regulated in t-BHP only group. Five genes - selenoprotein P, glutathione peroxidase 3, sirtuin 2, peroxiredoxin 2, serfiredoxin 1 homolog - may be related with the protective effect of wild ginseng extract. Conclusions : Based on the results, a protective effect of wild ginseng extract against t-BHP-induced oxidative damage in HepG2 cell line is not associated with the activities of glutathione peroxidase and glutathione reductase, but with the expression of selenoprotein P, glutathione peroxidase 3, sirtuin 2, peroxiredoxin 2, and serfiredoxin 1 homolog.

Protective Effect of Processed Saengmaek-san(SM) on Cell Damage in UV-exposed HaCaT Cell (생맥산(生脈散)이 자외선에 의한 피부각질세포의 상해에 미치는 영향)

  • Kim, Eun-Seop;Yoo, Dong-Youl
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.24 no.2
    • /
    • pp.33-51
    • /
    • 2011
  • Objectives: This study was performed to assess the protective effect of Saengmaek-san (SM) on UVB-induced HaCaT cell damage. Methods: The protective effects of Saengmaek-san(SM) were determined by UVB-induced HaCaT assay. We assessed protective effects of Saengmaek-san (SM) on LDH release and nitrite release from HaCaT. And COX-2, Bcl-2, Bax, $TNF{\alpha}$, c-jun, c-fos, NF-kB, iNOS, Bcl-xL gene expression were determined in HaCaT using real-time PCR method. Results: 1. SM inhibited LDH-release, nitrite production in UVB-exposed HaCaT. 2. SM suppressed the gene expression of COX-2, $TNF{\alpha}$ in UVB-exposed HaCaT. 3. SM increased the gene expression of Bcl-2, Bax, Bcl-xL family protein in UVB-exposed HaCaT. 4. SM suppressed the gene expression of c-jun, c-fos, NF-kB in UVB-exposed HaCaT. Conclusions: The study showed SM inhibited the cell damage in UVB-exposed HaCaT.

Schisandra Chinensis Inhibits Oxidative DNA Damage and Lipid Peroxidation Via Antioxidant Activity

  • Jeong, Jin-Boo;Jeong, Hyung-Jin
    • Korean Journal of Plant Resources
    • /
    • v.22 no.3
    • /
    • pp.195-202
    • /
    • 2009
  • Schisandra chinensis have been traditionally used in Asia for the treatment of dyspnea, cough, mouth dryness, spontaneous diaphoresis, nocturnal diaphoresis, nocturnal emission, dysentery, insomnia and amnesia. The purpose of this study is to evaluate the protective effects of Schisandra chinensis on oxidative DNA damage and lipid peroxidation induced by ROS in non cellular and cellular system. DPPH radical, hydroxyl radical and hydrogen peroxide scavenging assay were used to measure the antioxidant activities. Phi X-174RF I plasmid DNA cleavage assay and intracellular DNA migration assay were used to evaluate the protective effect on oxidative DNA damage. MTT assay and lipid peroxidation assay were used for evaluating the protective effect on oxidative cell damage. It was found to scavenge DPPH radical, hydrogen peroxide and hydroxyl radical and it inhibited oxidative DNA damage, lipid peroxidation and cell death induced by hydroxyl radical. These data indicate that Schisandra chinensis possesses a spectrum of antioxidant and DNA-protective properties

Protective Effect of Crataegi Fructus Extract on the Neurotoxicity Induced by Reactive Oxygen Species in Cultured C6 Glioma Cell

  • Ha, Dae-Ho;Yoo, Sun-Mi
    • Biomedical Science Letters
    • /
    • v.14 no.1
    • /
    • pp.27-32
    • /
    • 2008
  • To clerify the antioxidant effect of Crataegi Fructus (CF) extract on reactive oxygen species (ROS), The C6 glioma cells were treated with various concentrations of hydrogen peroxide ($H_2O_2$). The $H_2O_2$-induced neurotoxicity was measured by XTT assay for the cell viability. For the protective effect of CF extract on the cytotoxicity induced by $H_2O_2$, cell viability, lactate dehydroganase (LDH) activity, and the inhibitive activity of lipid peroxidation of CF extract were performed. In this study, $H_2O_2$ decreased cell viability dose- and time-dependent manners and increased LDH activity compared with the control. In the protective effect on $H_2O_2$, CF extract increased cell viability and decreased LDH activity on $H_2O_2$-induced cytotoxicity, lipid peroxidation by FTC assay. From these results, It is suggested that $H_2O_2$ was highly toxic on cultured C6 glioma cells, and also, CF extract showed the protective effect on $H_2O_2$-mediated cytotoxicity.

  • PDF