• 제목/요약/키워드: cell membrane damage

검색결과 285건 처리시간 0.032초

황기의 자외선에 의한 세포 손상을 막는 보호 효과 (The Protective Effects of Astragali Radix Against UV Induced Cellular Damage in Human Keratinocytes)

  • 이진영;박혜윤;염명훈;김덕희;김한곤
    • 생약학회지
    • /
    • 제39권4호
    • /
    • pp.300-304
    • /
    • 2008
  • The root of Astragalus membranaceus Bunge (Leguminosae) has been used in the Korean oriental medicine for strengthening the vital energy. UV irradiation has been suggested as a major cause of photo aging in skin. In order to investigate protective effects against UV induced cellular damage, Astragali Radix was extracted with 70% ethanol and dissolved in DMSO. The protective effect was detected by MTT assay, LDH assay, and Comet assay in immortalized human keratinocyte cell line, HaCaT cell system after UV irradiation. Astragli Radix 70% EtOH extract reduced UV induced cellular damage in cell survival, membrane integrity and DNA damage.

Examination of Cytopathic Effect and Apoptosis in Listeria monocytogenes-Infected Hybridoma B-Lymphocyte (Ped-2E9) Line In Vitro

  • Bhunia, Arun-Kumar;Feng, Xiang
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권4호
    • /
    • pp.398-403
    • /
    • 1999
  • In our previous studies, we reported that hybridoma B-lymphocytes can be used to determine the virulence of Listeria species in an in vitro cytotoxicity assay. Here, we examined the cytopathic effect, i.e., membrane damage and the nature of cell death induced by Listeria monocytogenes on murine hybridoma B-lymphocytes (Ped-2E9). Membrane damage was assessed by microscopic analyses and by measuring the release of intracellular alkaline phosphatase(AP) and lactate dehydrogenase (LDH). Cell death was determined by DNA fragmentation analyses using agarose gel electrophoresis. Infection by listeriolysin O (LLO)-producing L. monocytogenes strains induced substantial amounts of AP and LDH release from Ped-2E9 hybridoma B-cells, suggesting severe membrane damage in these cells, while an LLO-negative L. monocytogenes mutant strain had no effect. An LLO-producing recombinant L. innocua ($prifA^+hly^+$) strain also induced high AP and LDH release and cytopathic changes in Ped-2E9 cells. Light or scanning electron microscopic examination revealed L. monocytogenes mediated membrane destabilization, pore formation, intense cytoplasmic granulation, bleb formation, and lysis of Ped-2E9 cells. LLO-producing L. monocytogenes and L. innocua ($prifA^{+}hly{^}+$) also induced ladder-like DNA fragmentation in Ped-2E9 cells. Collectively, these results suggest that L. monocytogenes, specifically LLO-producing strains, can induce a severe cytopathic effect leading to apoptosis in hybridoma B-lymphocytes (Ped-2E9).

  • PDF

닭의장풀과 자주달개비에서 적색광과 이산화탄소에 의해 유도된 공변세포의 전위차 변화에 미치는 엽육세포의 영향 (Influence of the Mesophyll on the Change of electrical Potential Difference of Guard Cells Induced by Red-light and CO2 in Commelina communis L. and Tradescantia virginiana L.)

  • 이준상
    • Journal of Plant Biology
    • /
    • 제36권4호
    • /
    • pp.383-389
    • /
    • 1993
  • Intact leaf과 detached epidermis에 있는 공변세포의 전기 생리학적 특성에 대한 빛과 이산화탄소의 효과를 조사하였다. 빛을 intact leaf의 abaxial side에 처리하면 공변세포막이 과분극 (hyperpolarization)되었다. 닭의장풀의 intact leaf에 있는 공변세포들은 빛에 의해 최대 13 mV 그리고 이산화탄소에 의해 42 mV까지 membrane potential difference(MPD)가 negative하게 변했다. 자주달개비에서도 비슷한 결과를 얻었다. 그러나, 빛과 이산화탄소를 detached epidermis에 있는 공변세포에 처리할 경우에는 공변세포의 MPD가 변하지 않았다. 위의 결과로부터, 엽육세포가 공변세포의 MPD 변화에 영향을 주는 것으로 사료되어, 엽육세포들을 광합성 억제제들을 침윤시켜 엽육세포 광합성의 어느 기작이 공변세포 MPD 변화에 영향을 주는지 조사하였다. CCCP로 침윤한 잎의 공변세포막은 적색광에 의해 약간 탈분극(depolarization)되었고, 이산화탄소에 의해 과분극되었다. 반면에, DCCD와 DCMU로 침윤한 경우에는 대조구 잎과 마찬자기로 적색광과 이산화탄소에 의해 과분극되었다. Azide로 침윤한 잎에 적색광을 처리하면 공변세포의MPD는 변하지 않았고, 이산화탄소를 처리하면 다른 처리구들에 비해 훨씬 감소한 막의 과분극을 보였다. 이는 azide가 잎에 손상을 유도하며 세포내 대사활성을 감소시킨 결과 이산화탄소에 의한 MPD 변화가 작았고, 적색광은 아무 효과도 보이지 않은 것으로 사료된다. 따라서, 엽육세포가 적색광을 감지하며 빛에 의해 유도된 공변세포막 과분극은 순환적 광인산화 반응에 의해 생성된 에너지에 의존하나 이산화타소에 의해 유도된 공변세포막 과분극은 광합성가 무관하다고 볼 수 있다. 또한 이산화탄소를 intact leaf에 처리하면 공변세포 액포가 알칼리화되는 것을 관찰하였는데, 이는 막의 과분극이 양성자 이온의 방출에 의해 일어난다는 것을 의미한다.

  • PDF

Peroxidase and Photoprotective Activities of Magnesium Protoporphyrin IX

  • Kim, Eui-Jin;Oh, Eun-Kyoung;Lee, Jeong K.
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권1호
    • /
    • pp.36-43
    • /
    • 2014
  • Magnesium-protoporphyrin IX (Mg-PPn), which is formed through chelation of protoporphyrin IX (PPn) with Mg ion by Mg chelatase, is the first intermediate for the (bacterio)chlorophyll biosynthetic pathway. Interestingly, Mg-PPn provides peroxidase activity (approximately $4{\times}10^{-2}units/{\mu}M$) detoxifying $H_2O_2$ in the presence of electron donor(s). The peroxidase activity was not detected unless PPn was chelated with Mg ion. Mg-PPn was found freely diffusible through the membrane of Escherichia coli and Vibrio vulnificus, protecting the cells from $H_2O_2$. Furthermore, unlike photosensitizers such as tetracycline and PPn, Mg-PPn did not show any phototoxicity, but rather it protected cell from ultraviolet (UV)-A-induced stress. Thus, the exogenous Mg-PPn could be used as an antioxidant and a UV block to protect cells from $H_2O_2$ stress and UV-induced damage.

햄스터 난소세포에서 Daidzein과 Genistein에 의해 유도된 산화적 스트레스에 대한 Vitamin C의 효과 (Effect of Vitamin C on Oxidative Stress Induced by Daidzein and Genistein in Hamster Ovary Cells)

  • 김민혜;김안근
    • 약학회지
    • /
    • 제51권4호
    • /
    • pp.285-290
    • /
    • 2007
  • The oxidative stress causes many diseases like cancer, aging, cardiovascular disease, degenerative neurological disorders (Parkinson’s disease, and Alzheimer's disease) by damage of cell membrane, protein deformation, and damage of DNA due to the oxidation of lipid of cell membrane, protein of tissue or enzyme, carbohydrate, and DNA. It is caused by the reactive oxygen species (ROS) that is produced in the metabolic process of oxygen in cell. The superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in cell systemize the antioxidative enzymes to control the oxidative stress. In this research, it is measured that the survival rate of cell by the typical isoflavonoid of daidzein or genistein, activity of antioxidative enzyme, and ROS level, in order to study the effect of isoflavonoid over the ROS production in cell and antioxidative system. As the similar action of the isoflavonoid with the estrogen is examined, women are encouraged to get bean. In view of this trend, it is very important to find out a combination medicine that lowers the oxidative stress caused by the daidzein in the ovarian cell. In the combined treatment of the typical antioxidant of vitamin C to oxidative stress which induced by daidzein recover the control level particularly lowering the ROS in cell by 30%. However, it made no effect in the combined treatment with genistein. Therefore, the research took the combination effect of daidzein with vitamin C in order to check it effect over the antioxidative system. In conclusion, it was disclosed that the oxidative stress caused by daidzein is related to the lowering activity of SOD, and the specific combination effect of daidzein with vitamin C is related to the recovery of SOD activity.

The Preventive Effect of 5-Iodo-6-Amino-1,2-Benzopyrone on Apoptosis of Rat Heart-derived Cells induced by Oxidative Stress

  • Kyoumg A Chung;Ji Seung Back;Jae Hyun Jang
    • 대한의생명과학회지
    • /
    • 제28권4호
    • /
    • pp.237-246
    • /
    • 2022
  • Ischemia-reperfusion results in excess reactive oxygen species (ROS) that affect myocardial cell damage. ROS production inhibition is effectively proposed in treating cardiovascular diseases including myocardial hypertrophy. Studies have shown that oxidizing cultured cells in in vitro experiments gradually decreases the permeability of mitochondrial membranes time- and concentration-dependent, resulting in increased mitochondrial membrane damage due to secondary ROS production and cardiolipin loss. However, recent studies have shown that 5-iodo-6-amino-1,2-benzopyrone (INH2BP), an anticancer and antiviral drug, inhibited peroxynitrite-induced cell damage in in vitro and alleviated partial or overall inflammation in animal experiments. Therefore, in this paper, we studied the preventive effect of INH2BP on H9c2 cells derived from mouse heart damaged by oxidative stress using 700 μM of hydrogen peroxide. As a result of oxidative stress to H9c2 cells by hydrogen peroxide whether the treatment of INH2BP or not, hydrogen peroxide caused serious damage in H9c2 cells. These results were confirmed with cell viability and Hoechst 33342 assays. And this damage was through cell death. However, it was confirmed that H9c2 cells pretreated with INH2BP significantly reduced cell death by hydrogen peroxide. In addition, measurements with DCF-DA assay to determine whether ROS is produced in H9c2 cells treated with only hydrogen peroxide produced ROS significantly, but H9c2 cells pretreated with INH2BP significantly reduced ROS production by hydrogen peroxide. Taken together, it is believed that INH2BP can be useful for the prevention and treatment of cardiovascular diseases induced through oxidative stress such as heart damage caused by ischemia/reperfusion.

3-Methylthiopropionic Acid of Rhizoctonia solani AG-3 and Its Role in the Pathogenicity of the Fungus

  • Kankam, Frederick;Long, Hai-Tao;He, Jing;Zhang, Chun-hong;Zhang, Hui-Xiu;Pu, Lumei;Qiu, Huizhen
    • The Plant Pathology Journal
    • /
    • 제32권2호
    • /
    • pp.85-94
    • /
    • 2016
  • Studies were conducted to determine the role of 3-methylthioproprionic acid (MTPA) in the pathogenicity of potato stem canker, Rhizoctonia solani, and the concentrations required to inhibit growth of R. solani under laboratory and plant house-based conditions. The experiments were laid out in a completely randomized design with five treatments and five replications. The treatments were 0, 1, 2, 4, and 8 mM concentrations of MTPA. The purified toxin exhibited maximal activity at pH 2.5 and $30^{\circ}C$. MTPA at 1, 2, 4, and 8 mM levels reduced plant height, chlorophyll content, haulm fresh weight, number of stolons, canopy development, and tuber weight of potato plants, as compared to the control. MTPA significantly affected mycelial growth with 8 mM causing the highest infection. The potato seedlings treated with MTPA concentrations of 1.0-8.0 mM induced necrosis of up to 80% of root system area. Cankers were resulted from the injection of potato seedling stems with 8.0 mM MTPA. The results showed the disappearance of cell membrane, rough mitochondrial and cell walls, change of the shape of chloroplasts, and swollen endoplasmic reticulum. Seventy-six (76) hours after toxin treatment, cell contents were completely broken, cytoplasm dissolved, and more chromatin were seen in the nucleus. The results suggested that high levels of the toxin concentration caused cell membrane and cytoplasm fracture. The integrity of cellular structure was destroyed by the phytotoxin. The concentrations of the phytotoxin were significantly correlated with pathogenicity and caused damage to the cell membrane of potato stem base tissue.

그라비올라로부터 분리된 Kaempferol 및 Nicotiflorin의 1O2으로 유도된 세포손상에 대한 보호 효과와 그 메커니즘 (Cellular Protective Effects and Mechanisms of Kaempferol and Nicotiflorin Isolated from Annona muricata against 1O2-induced Damage)

  • 박소현;신혁수;이난희;홍인기;박수남
    • 공업화학
    • /
    • 제29권1호
    • /
    • pp.49-55
    • /
    • 2018
  • 본 연구에서는 그라비올라의 주성분인 nicotiflorin을 분리하고 그 아글리콘 성분인 kaempferol을 얻어 세포 보호 효과 및 그 보호 메커니즘을 규명하였다. L-Ascorbic acid 및 (+)-${\alpha}$-tocopherol을 대조군으로 하여, $^1O_2$로 유도된 세포 손상에 대해 nicotiflorin 및 kaempferol의 보호 효과를 측정한 결과 nicotiflorin < (+)-${\alpha}$-tocopherol < kaempferol 순으로 보호 효과가 증가하였다. L-Ascorbic acid는 세포 보호 효과를 보이지 않았다. 이들의 세포 보호 효과 메커니즘을 밝히기 위해 singlet oxygen 소광 속도 상수, 자유라디칼 소거 활성, ROS 소거 활성 및 적혈구 세포 침투율을 측정하였다. 실험 결과, kaempferol과 그 배당체인 nicotiflorin의 세포 보호 효과에 있어서 큰 차이는 세포막에의 침투가 가장 큰 요인으로 확인되었다. 대조군 L-ascorbic acid가 항산화능은 크지만 실험 조건에서 세포막에 침투가 잘 안되어 세포 보호 효과가 나타나지 않은 것으로 확인되었다. Kaempferol과 (+)-${\alpha}$-tocopherol의 비교를 통해 세포 침투뿐만 아니라 라디칼 소거활성 및 ROS 소거 활성도 세포 보호 효과에 기여하는 것으로 나타났다. 결론적으로, 광증감 반응으로 유도된 세포막 파괴에 대한 보호작용은 항산화제들의 세포 침투, 자유라디칼 및 ROS 소거 활성이 큰 영향을 미치는 것으로 확인되었다.

Protective Effects of Alpinia katsumadai Extract Against Oxidative Stress

  • Lee, Eul-Jae;Kim, Jeong-Hee
    • International Journal of Oral Biology
    • /
    • 제36권3호
    • /
    • pp.149-154
    • /
    • 2011
  • In the present study, total methanol extracts prepared from Alpinia katsumadai showed significant protective effects against the oxidative stress induced by hydrogen peroxide, UV-C or ${\gamma}$-ray irradiation. These protective effects were substantially increased by treatment with 20~100 ${\mu}g$/ml of the extract. The A. katsumadai total methanol preparation was further fractionated into n-hexane, dichloromethane, ethylacetate, n-butanol and water fractions. Among these five fractions, the ethylacetate and butanol fractions of A. katsumadai showed the strongest protective effects against oxidative stress induced by UV-C and ${\gamma}$-ray irradiation. These fractions also showed high DPPH radical scavenging and lipid peroxidation inhibitory activities. In addition, both fractions displayed cell proliferation activation effects, as evidenced by significant increases in colony formation. Our current data thus suggest that the mechanisms underlying the protective effects of A. katsumadai against oxidative damage may include radical scavenging, protection against cell membrane damage and stimulation of cell proliferation.

High Concentration of Red Clay as an Alternative for Antibiotics in Aquaculture

  • Jung, Jaejoon;Jee, Seung Cheol;Sung, Jung-Suk;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권1호
    • /
    • pp.130-138
    • /
    • 2016
  • The use of antibiotics in aquaculture raises environmental and food safety concerns because chronic exposure of an aquatic ecosystem to antibiotics can result in the spread of antibiotic resistance, bioaccumulation of antibiotics in the organisms, and transfer of antibiotics to humans. In an attempt to overcome these problems, high-concentration red clay was applied as an alternative antibiotic against the following common fish pathogens: Aeromonas salmonicida, Vibrio alginolyticus, and Streptococcus equinus. The growth of A. salmonicida and V. alginolyticus was retarded by red clay, whereas that of S. equinus was promoted. Phase contrast and scanning electron microscopy analyses confirmed the attachment of red clay on cell surfaces, resulting in rapid gravitational removal and cell surface damage in both A. salmonicida and V. alginolyticus, but not in S. equinus. Different cell wall properties of grampositive species may explain the unharmed cell surface of S. equinus. Significant levels of oxidative stress were generated in only the former two species, whereas significant changes in membrane permeability were found only in S. equinus, probably because of its physiological adaptation. The bacterial communities in water samples from Oncorhynchus mykiss aquacultures supplemented with red clay showed similar structure and diversity as those from oxytetracycline-treated water. Taken together, the antibiotic effects of high concentrations of red clay in aquaculture can be attributed to gravitational removal, cell surface damage, and oxidative stress production, and suggest that red clay may be used as an alternative for antibiotics in aquaculture.