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Introduction

Animals, plants, and aerobic microorganisms respire to

acquire ATP through the electron-transfer chain in the

membrane, using O2 as a terminal electron acceptor. Reactive

oxygen species (ROS) such as superoxide, hydrogen

peroxide, and hydroxyl radical are often generated owing

to the incomplete reduction of O2. DNA mutation, protein

denaturation, and lipid peroxidation could be observed

through the ROS-induced oxidation [2, 29]. Thus, antioxidant

enzymes are present in most organisms to overcome the

oxidative stress, and include superoxide dismutase (SOD),

catalase, and peroxidase [14]. Although both catalase and

peroxidase have the ability to detoxify H2O2, their mechanism

to remove H2O2 is different from each other [1, 5, 34].

Catalase mediates the redox reactions with H2O2, generating

H2O and O2 as the reaction products [1], whereas peroxidase

reduces organic peroxide (ROOH: if R is H, it is H2O2) to

form ROH and H2O with the concomitant oxidation of the

electron donor [5, 34].

The metabolic pathway from δ-aminolevulinic acid

(ALA) to PPn is shared by the biosynthesis of both heme

and (bacterio)chlorophyll [22, 40]. In animals, fungi, and a

few bacteria such as purple nonsulfur photosynthetic

bacteria, ALA is synthesized through decarboxylative

condensation of glycine and succinyl-CoA [42]. In plants,

algae, and most bacteria, ALA is alternatively synthesized

from the reduction of glutamyl-tRNA, followed by

aminomutase reaction [4]. Ferrochelatase [8] mediates the

coordination of Fe2+ within PPn to form Fe-PPn, also

known as heme b or protoheme IX, whereas Mg chelatase

mediates the coordination of Mg2+ within PPn to form Mg-

PPn, the first committed precursor for the biosynthesis of

(bacterio)chlorophyll [6, 24].

Antioxidative activities of metalloporphyrins to detoxify

superoxide and H2O2 have been reported [10, 27, 35].

Manganese (III) meso-tetrakis (4-benzoic acid) porphyrin

(MnTBAP) and Mn (III) meso-tetrakis (1-methyl-4-pyridyl)

porphyrin (MnMPyP) showed abilities to remove superoxide

as well as H2O2 [10]. When Mn ions at the center of MnTBAP

and MnMPyP are replaced by zinc ion (Zn), catalase-like

activity, though significantly reduced in comparison with

that of the Mn-containing porphyrins, is still observed [10].

In addition, it was reported that the H2O2-induced DNA

breakage in mitochondria could be blocked by the treatment

of MnTBAP [27]. Moreover, the peroxidase activity of Mn (III)

protoporphyrin IX-6(7)-gly-gly-his methyl ester (MnGGH)

was proposed [35]. Formation of Zn-containing PPn (Zn-
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Magnesium-protoporphyrin IX (Mg-PPn), which is formed through chelation of protoporphyrin

IX (PPn) with Mg ion by Mg chelatase, is the first intermediate for the (bacterio)chlorophyll

biosynthetic pathway. Interestingly, Mg-PPn provides peroxidase activity (approximately

4 × 10-2 units/µM) detoxifying H2O2 in the presence of electron donor(s). The peroxidase

activity was not detected unless PPn was chelated with Mg ion. Mg-PPn was found freely

diffusible through the membrane of Escherichia coli and Vibrio vulnificus, protecting the cells

from H2O2. Furthermore, unlike photosensitizers such as tetracycline and PPn, Mg-PPn did

not show any phototoxicity, but rather it protected cell from ultraviolet (UV)-A-induced

stress. Thus, the exogenous Mg-PPn could be used as an antioxidant and a UV block to protect

cells from H2O2 stress and UV-induced damage.
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PPn) was reported in a Mg chelatase (bchD) mutant of

Rhodobacter sphaeroides [15]. Contrary to the antioxidative

effect of the above Mn-porphyrins, the seemingly opposite

effect of Zn-PPn on oxidative stress was illustrated by its

inhibition of heme oxygenase-1 of the tumor cell, thereby

decreasing the level of bilirubin [30]. Since bilirubin is

known to act as an antioxidant, Zn-PPn showed potent

antitumor effect through the indirect increase of ROS in

tumor cells [30]. When the heme in prostaglandin

endoperoxide synthase was substituted with Mn (III)-PPn,

the substituted enzyme still showed cyclooxygenase

activity but had approximately 100-fold decreased peroxidase

activity compared with the native enzyme [39]. Thus, the

antioxidative activities and the ROS-related functions have

been demonstrated by a variety of synthetic and natural

metalloporphyrin derivatives.

In this work, we examined whether any intermediate of

the bacteriochlorophyll (Bch) biosynthetic pathway illustrates

antioxidative activity. Interestingly, Mg-PPn, which is

accumulated by the bchM (S-adenosylmethionine: Mg-PPn

methyltransferase) mutant of R. sphaeroides during anaerobic

growth in the presence of dimethylsulfoxide (DMSO) as a

terminal electron acceptor, showed peroxidase activity.

Furthermore, Mg-PPn was found freely diffusible through

the membranes of E. coli and V. vulnificus. The result further

corroborates that the exogenously added Mg-PPn protects

the V. vulnificus katG mutant from H2O2 stress. Unlike

photosensitizers such as PPn and tetracycline, Mg-PPn did

not reveal any phototoxicity after exposure to UV-A light.

Rather it protected E. coli in a dose-dependent manner from

the killing effect by UV-A. Accordingly, the usefulness of

Mg-PPn as an antioxidant and a UV block is proposed.

Materials and Methods

Bacterial Strains and Growth Conditions

E. coli was grown under aerobic conditions at 37°C in Luria-

Bertani (LB) medium [36]. V. vulnificus MO6-24/O was grown

aerobically at 30°C in LB medium supplemented with 2% (w/v)

NaCl (LBS, pH 7.5). R. sphaeroides 2.4.1 was grown in Sistrom’s

succinate-based minimal (Sis) medium [37] aerobically and

anaerobically as described previously [11]. When appropriate,

kanamycin (Km) and tetracycline (Tc) were added to E. coli and

R. sphaeroides cultures as indicated previously [17]. Tc was added

to the V. vulnificus culture at the concentration of 2 µg/ml.

Construction of Mutant

A 580 bp DNA fragment upstream from the 83rd residue of

BchM of R. sphaeroides was PCR-amplified with the forward

primer (5’-GTG CGG CTC GCG GGC TGC G-3’) and reverse

primer (5’-CTG CGC GCC GCG GGC CG-3’, where the SacII site

is in bold), and cloned into T-vector. Likewise, a 522 bp DNA

fragment downstream from the 208th residue of BchM was PCR-

amplified with the forward primer (5’-GTG TCC CGC GGC TTC

TAC-3’, where the SacII site is in bold and the mutated sequence is

underlined) and reverse primer (5’-CGA GGC CCG CCG TCT

GGG-3’), and cloned into T-vector. The inserted DNA fragments

were isolated after digestion of the recombinant plasmids with

PstI (in the multicloning sites of T-vector) and SacII, and then

cloned into a PstI site of pBluescript (Stratagene). The resulting

1.1 kb DNA fragment was cloned into a PstI site of suicide

plasmid pLO1 (kanamycin resistant (Kmr)) [23] to generate

pLObchM. It was mobilized into R. sphaeroides as described

previously [9], and the single-crossover exconjugant (Kmr) was

isolated and subjected to segregation to double crossover (bchM

mutant: Kms) on Sis agar plate containing sucrose (10%).

Preparation of the Biosynthetic Intermediates for Bch

Intermediates of the Bch biosynthetic pathway were purified

using bchM mutant, bchFNB mutant [20], bchZ mutant [18, 20],

bchF mutant [18-20], bchZF mutant [18], bchC mutant [20], and

bchG mutant [20]. The mutants were cultivated in Sis medium

supplemented with Tween 80 (0.03%) under dark anaerobic

conditions (with DMSO). Mg-PPn was extracted either from the

cells of bchM mutant using acetone: methanol (7:2, by volume) [31]

or from the culture supernatants using diethyl ether as performed

to extract other Bch intermediates [28]. The extracted pigments,

which had been dried with N2 stream [28], were dissolved in 50%

ethanol prior to use. The level of Mg-PPn was determined by

spectrophotometric measurements using the extinction coefficient

(ε) at 419 nm (ε = 308 mM-1cm-1) [41].

Catalase Assay

Catalase activity was measured in 50 mM potassium phosphate

buffer containing 20 mM H2O2 and 100 µM Mg-PPn. The activity

was determined by measuring the decrease of absorbance at

240 nm, which reflects the level of H2O2 [33].

Peroxidase Assay

Peroxidase activity was performed at 30°C in 100 mM potassium

phosphate buffer (pH 7.0) supplemented with 5 mM 2,4-dichlorophenol

(DCP) as an electron donor, 3.2 mM 4-aminoantipyrine (AAP),

and 5 mM H2O2 as described previously [26, 38]. The activity was

measured by monitoring the increase of optical density at 510 nm,

which reflects the level of quinoneimine, a Schiff base synthesized

from the reaction between AAP and the oxidized electron donor

DCP. The activity, which was calculated using the extinction

coefficient of quinoneimine at 510 nm (ε = 6.58 mM-1cm-1), was

expressed as U (unit = µmol quinoneimine/min) per mg of

metalloporphyrins such as cobalt (Co)-, copper (Cu)-, gallium

(Ga)-, magnesium (Mg)-, manganese (Mn)-, nickel (Ni)-, tin (Sn)-,
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zinc (Zn)-, and Mg-PPn. All the metalloporphyrins were purchased

from Frontier Scientific (Utah, USA).

Determination of Mg-PPn Monomethyl Ester (MPME)

E. coli DH5α and V. vulnificus MO6-24/O were transformed

with a pRK415 [16] derivative, pRKbchM, which contains a 0.8 kb

DNA of the bchM gene of R. sphaeroides, which extends from the

80 bp upstream of its start codon to the 37 bp downstream of the

stop codon, in the same orientation as the lac promoter of the

plasmid. They were grown in LB and LBS supplemented with Mg-

PPn (10 µM), and cells were harvested during exponential growth

(A600 at approximately 0.5). Porphyrins were extracted from the

cells using acetone:methanol (7:2, by volume) [31], and further

analyzed by HPLC (LC-6AD, Shimadzu, Japan) on a Synergy 4 µ

Max-RP column (Phenomenex, 150 × 4.6 mm) using a fluorimetric

detector (excitation wavelength of 420 nm and emission wavelength

of 595 nm) as described previously [24]. The column was run

using a 20 min linear gradient from 85% H2O, 15% acetonitrile,

and 0.05% triethylamine (by volume) to 100% acetonitrile at a flow

rate of 1 ml/min. Mg-PPn and MPME were eluted at approximately

9 and 13.5 min, respectively, under these conditions. The identity

of the pigments was also confirmed by fluorescence emission

spectra on a spectrofluorimeter (Quanta master QM-4/2005; PTI,

USA) using an excitation wavelength of 420 nm.

Cell Survival by Mg-PPn from H2O2 Stress

V. vulnificus katG mutant [33] was grown aerobically to

logarithmic phase in LBS, and then harvested during exponential

growth (A600 at approximately 1.0). Cells were washed twice with

phosphate-buffered saline (pH 7.5) supplemented with 3% NaCl

(PBS), and suspended to a final cell density of 105 colony forming

unit (CFU)/ml of PBS containing 50 µM H2O2. A control experiment

was done in the same buffer without H2O2. Cells were incubated

at 30° with shaking, and aliquots were taken intermittently during

90 min to determine the viable counts (CFU/ml) on LBS agar

plates. Relative survival (%) was expressed as the percentage of

the initial count of CFU.

Phototoxicity Under Ultraviolet (UV)-Light Irradiation

The phototoxicity of Mg-PPn was determined as described

previously with minor modifications [25]. E. coli DH5α was grown

to logarithmic phase (A600 at approximately 0.5) in LB, and an

aliquot (0.5 ml) was harvested and inoculated into LB containing

tetracycline, PPn, and Mg-PPn (each at 1.2 µM or more, especially

for Mg-PPn), which had been dissolved in ethanol (50%) before its

addition to the medium. Ethanol only was added to the control

tube at the final concentration of 0.1%. The samples were incubated

at 30°C for 10 min to allow the diffusion of treated chemicals into

cells. UV-A (320-400 nm) light with the intensity of 0.045 J/cm2 or

0.54 J/cm2 was irradiated to the cells for 10 min. Cells were then

diluted into LB and incubated for 20 min at 23°C to allow the

dispersion of the treated chemicals from cells prior to plating.

Viable counts (CFU/ml) were determined on LB agar plates, and

the relative survival (%) was expressed as the ratio of viable

counts between a UV-exposed sample and an unexposed one.

Results and Discussion

Mg-PPn Shows Peroxidase Activity.

It has been known that the light-absorbing pigments as

well as other cellular components of the photosynthetic

purple-nonsulfur bacteria such as Rhodobacter capsulatus

and Rhodopseudomonas palustris are beneficial to the health

of fish and shrimp [3, 21, 32]. The solvent-extracted pigments

from R. capsulatus inhibited lipid peroxidation [32]. However,

irradiation of the free Bch generates singlet-state oxygen that

could cause oxidative damage to cells [43] unless carotenoids

dissipate the ROS energy through heat [7]. The antioxidative

activity of photosynthetic bacteria has been mostly attributed

to carotenoids, so the metabolic intermediates (Fig. 1) for

bacteriochlorophyll biosynthesis have not been examined

yet for their antioxidative activity. In this work, several Bch

biosynthetic mutants of R. sphaeroides were cultured under

anaerobic conditions in the presence of DMSO, and the Bch

intermediates that accumulated in cells or culture supernatants

were solvent-extracted and examined for antioxidative activity.

The bch mutants used were as follows: bchM mutant,

bchFNB mutant [20], bchZ mutant [18, 20], bchF mutant [18-

20], bchZF mutant [18], bchC mutant [20], and bchG mutant

[20] (Fig. 1A). Among the intermediates from several bch

mutants, only Mg-PPn, which is derived from the bchM

mutant, showed peroxidase activity (Fig. 2). Approximately

110 U of peroxidase activity was observed with 1 mg of Mg-

PPn, whereas no catalase activity was detected (data not

shown). Furthermore, the peroxidase activity of Mg-PPn

increased in direct proportion to its concentration (Fig. 3),

yielding a specific activity of approximately 4 × 10-2 units/µM

of Mg-PPn. The extracted Mg-PPn from bchM mutant

showed a spectral profile that was virtually the same as that

of the commercially available one (Fig. 1B).

It was examined whether the peroxidase activity was

unique to the PPn chelated with Mg ion (Fig. 3). No significant

peroxidase activity was found with PPn chelated with Co,

Cu, Ga, Ni, and Sn in comparison with that of Mg-PPn

(Fig. 3). The derivatives of PPn chelated with Zn and Mn

have been known to contain some peroxidase activity [10,

27, 35]. However, Zn-PPn and Mn-PPn yielded 10-20% of

the peroxidase activity of Mg-PPn at the most. Thus, Mg-

PPn was the most effective antioxidant among the metallo-

PPn examined (Fig. 3). The mechanism for the peroxidase

reaction by Mg-PPn in the presence of electron donor

remains to be elucidated.
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Mg-PPn Protects Cell from H
2
O

2
.

It was determined whether Mg-PPn can freely enter the cell

by diffusion through the membrane. E. coli and V. vulnificus

were transformed with pRKbchM, a recombinant pRK415

Fig. 2. Peroxidase activity of Mg-PPn. 

The peroxidase activity of Mg-PPn was measured by monitoring the

formation of quinoneimine at 510 nm, which is a condensation

product through the formation of Schiff base between AAP and the

oxidized electron donor DCP in the presence of H2O2. Control with

Mg-PPn only (the first bar) is shown together with those without Mg-

PPn (the second bar), H2O2 (the third bar), DCP (the fourth bar), and

AAP (the fifth bar). Peroxidase activity by Mg-PPn (the sixth bar) was

expressed as U (unit = µmol quinoneimine/min) per mg of Mg-PPn.

The error bars correspond to the standard deviations of the means.

The + stands for the inclusion of the component in the reaction

mixture, whereas − stands for its omission.

Fig. 3. Peroxidase activities of metalloporphyrins. 

Peroxidase activity was measured using various metalloporphyrins (1

to 20 µM) including Mg-PPn. The activity was expressed as U (unit =

µmol quinoneimine/min). Co, cobalt; Cu, Copper; Ga, Gallium; Mg,

Magnesium; Mn, Manganese; Ni, Nickel; Sn, Tin ; Zn, Zinc.

Fig. 1. Biosynthetic pathway of Bch. 

(A) PPn, which is synthesized from δ-aminolevulinic acid (ALA), is chelated with the Fe ion by ferrochelatase (hemH) and with the Mg ion by

magnesium chelatase (bchHID) to form Fe-PPn (heme) and Mg-PPn, respectively. The methylation of Mg-PPn by BchM leads to the formation of

MPME, which is metabolized further to synthesize Bch. The genes illustrated code for the following enzymes: bchE, MPME oxidative cyclase; bchJ,

4-vinyl reductase; bchLNB, light-independent protochlorophyllide a reductase; bchXYZ, chlorophyllide a reductase; bchF, 3-vinyl bacteriochlorophyll

hydratase; bchC, 3-desacetyl-3-hydroxyethyl bacteriochlorophyllide a dehydrogenase; bchG, bacteriochlorophyll synthase; bchP, geranylgeranyl

reductase. The structure of Mg-PPn is shown at the right side of Mg-PPn of the metabolic pathway. (B) The spectral profile of the extracted Mg-

PPn from bchM mutant is shown with that of the commercially available Mg-PPn.
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carrying bchM DNA coding for the S-adenosylmethionine:

Mg-PPn methyltransferase of R. sphaeroides. They were

cultured aerobically in medium supplemented with Mg-

PPn (10 µM). The cells were washed with PBS, and then

extracted with acetone-methanol to detect Mg-PPn monomethyl

ester (MPME). Both recombinant E. coli and V. vulnificus

containing pRKbchM yielded MPME, which was identified

by HPLC (Fig. 4). No MPME was detected with the

recombinant cells containing vector plasmid only. Since

BchM is a cytosolic enzyme [12], the formation of MPME

by the recombinant cells containing pRKbchM clearly

indicates that Mg-PPn should freely diffuse into the cell

membrane.

Since Mg-PPn is found diffusible through the membrane,

it was determined whether the exogenously added Mg-PPn

protects cell from H2O2 stress. The katG mutant of V.

vulnificus [33] was used because the bacterium has KatG, a

catalase-peroxidase, only in the cytosol. Its KatE, a catalase,

has a signal peptide for membrane translocation, so it is

thought to be present in the periplasmic space. The katG

mutant was sensitive to H2O2, where its survival decreased

by more than 90% after exposure to 50 µM H2O2 for 1 h

(Fig. 5). Mg-PPn protected the katG mutant in a dose-

dependent way from H2O2. Thus, Mg-PPn can be used as

an antioxidant through its exogenous addition to the cell.

The electron donor for Mg-PPn in cell remains to be

identified.

Mg-PPn Does Not Show Any Phototoxicity, But Rather

Protects the Cell from UV Light.

Most porphyrin compounds are photosensitizers, demonstrating

phototoxicity when exposed to UV light [13]. The phototoxic

effect of Mg-PPn toward E. coli was examined after its

exposure to UV-A (320~400 nm), which comprises approximately

Fig. 4. Uptake of Mg-PPn into E. coli (pRKbchM) and V. vulnificus (pRKbchM), and the fluorimetric detection of MPME. 

(A) E. coli (pRKbchM) and (B) V. vulnificus (pRKbchM) were cultivated in the presence of Mg-PPn (10 µM), and porphyrins were extracted from

the cells with acetone: methanol (7:2, by volume). Mg-PPn and MPME were further analyzed by HPLC using a fluorimetric detector (excitation

wavelength of 420 nm and emission wavelength of 595 nm). Mg-PPn was eluted at approximately 9 min and MPME at approximately 13.5 min.

Fig. 5. Effect of Mg-PPn on the survival of V. vulnificus katG

mutant after H2O2 treatment. 

Cells, which had been cultured in LBS, were transferred to PBS (pH

7.5, 3% NaCl) containing 50 µM H2O2 in the presence (2 µM or 10 µM)

or absence of Mg-PPn. Treatment of cells with Mg-PPn only (10 µM)

was included as a control. Viable cell counts on LBS agar plates were

done with the aliquots taken intermittently during the 90 min

exposure to H2O2. The relative survival (%) was expressed as the

percentage of the initial count of CFU. The error bars correspond to

the standard deviations of the means.
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90% of the UV light in day illumination with higher

penetrability compared with UV-B (320~280 nm). No

decrease in survival of E. coli by UV-A was observed in the

control tube containing ethanol only. When tetracycline

was irradiated with UV-A, however, more than 90% of the

E. coli cells were killed. Irradiation of PPn with UV-A

resulted in survival reduction by approximately 30%. On

the contrary, Mg-PPn did not show any phototoxicity

under these conditions (Fig. 6).

The same phototoxicity test was repeated with 12-fold

stronger UV-A (Fig. 7), where the survival of E. coli was

reduced by approximately 80%. The survival of E. coli went

up to approximately 40% with 1.2 µM of Mg-PPn, which

had been used in Fig. 6. Moreover, approximately 90%

survival was achieved by increasing Mg-PPn up to 6 µM.

Thus, the phototoxicity of Mg-PPn was not found under

UV-A illumination. Rather, it protects cells from UV-

induced damage.

The cause of the phototoxicity of a photosensitizer is

usually ascribed to oxidative stress, which is generated in

the presence of O2 by its exposure to UV-A [25]. The

phototoxicity of Mg-PPn was not expected, since it illustrates

peroxidase activity. Moreover, bchM mutant of R sphaeroides,

which accumulates Mg-PPn in cell, is not sensitive to

visible light under aerobic conditions. Although the

differences of peroxidase activities between Mg-PPn and

other metalloporphyrins such as MnTBAP and MnMPyP

remains to be determined, one remarkable property of Mg-

PPn is its photoprotective function against UV-A. Accordingly,

Mg-PPn can be usefully applied not only to protect cells

from H2O2 stress but also from damage by UV-A. Thus, its

application could be extended from an antioxidant to an

ingredient in sun blocks.
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