• Title/Summary/Keyword: cell mechanics

Search Result 147, Processing Time 0.028 seconds

Computation of design forces and deflection in skew-curved box-girder bridges

  • Agarwal, Preeti;Pal, Priyaranjan;Mehta, Pradeep Kumar
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.255-267
    • /
    • 2021
  • The analysis of simply supported single-cell skew-curved reinforced concrete (RC) box-girder bridges is carried out using a finite element based CsiBridge software. The behaviour of skew-curved box-girder bridges can not be anticipated simply by superimposing the individual effects of skewness and curvature, so it becomes important to examine the behaviour of such bridges considering the combined effects of skewness and curvature. A comprehensive parametric study is performed wherein the combined influence of the skew and curve angles is considered to determine the maximum bending moment, maximum shear force, maximum torsional moment and maximum vertical deflection of the bridge girders. The skew angle is varied from 0° to 60° at an interval of 10°, and the curve angle is varied from 0° to 60° at an interval of 12°. The scantly available literature on such bridges focuses mainly on the analysis of skew-curved bridges under dead and point loads. But, the effects of actual loadings may be different, thus, it is considered in the present study. It is found that the performance of these bridges having more curvature can be improved by introducing the skewness. Finally, several equations are deduced in the non-dimensional form for estimating the forces and deflection in the girders of simply supported skew-curved RC box-girder bridges, based upon the results of the straight one. The developed equations may be helpful to the designers in proportioning, analysing, and designing such bridges, as the correlation coefficient is about 0.99.

Oscillatory behavior of microglial cells (미세아교세포의 진동 거동의 연구)

  • Park, Eunyoung;Cho, Youngbin;Ko, Ung Hyun;Park, Jin-Sung;Shin, Jennifer H.
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.1
    • /
    • pp.74-80
    • /
    • 2021
  • Cells regulate their shapes and motility by sensing the cues from the internal and external microenvironment. Under different circumstances, microglia, the brain resident immune cells, undergo dynamic phenotypic changes, one of which is a remarkable periodic oscillatory migration in vitro. However, very little is known about the kinematic and dynamic perspectives of this oscillatory behavior. In this study, we tracked the changes in cell morphology and nuclear displacement, and visualized the forces using traction force microscopy (TFM). By correlation analyses, we confirmed that the lamellipodia formation preceded the nuclear translocation. Moreover, traction, developed following lamellipodia formation, was found to be localized and fluctuated at two ends of the oscillating cells. Taken together, our results imply that oscillatory microglial cells feature a viscoelastic migration, which will contribute to the field of cell mechanics.

Experimental and numerical investigation on honeycomb, modified honeycomb, and spiral shapes of cellular structures

  • Faisal Ahmed, Shanta;Md Abdullah Al, Bari
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.665-673
    • /
    • 2022
  • Additive manufacturing is an emerging method to manufacture objects with complex shapes and intricate geometry, such as cellular structures. The cellular structures can widely be used in lightweight application as it provides a high strength-to-load ratio. Under the various testing condition, each topology shows different mechanical properties. This study investigates the structural response of various types of cellular structures in compression loading, both experimentally and numerically. For that purpose, honeycomb, modified honeycomb, and spiral-type topology were selected to investigate. Besides, structural properties change by changing the cell size for each topology is also investigated. The specimens were subjected to a compression test by a universal testing machine to determine the absorbed energy and other mechanical properties. An implicit numerical study was also conducted to determine cellular structure's mechanical characteristics. The experimental and numerical results show that the honeycomb structure absorbs the maximum energy compared to the other structures. The experimentally and numerically calculated absorbed energy for the 4.8 mm honeycomb structure was 32.2J and 30.63J, respectively. The results also show that the increase of cell size for a particular cellular structure reduces the energy-absorbing ability of that structure.

Slipchip Device Development in Molecular Diagnostics

  • Qingtian Yin;Huiwen Bai;Ruijie Li;Youngung Seok
    • Korean Journal of Materials Research
    • /
    • v.34 no.2
    • /
    • pp.63-71
    • /
    • 2024
  • Slipchip offers advantages such as high-throughout, low cost, and simple operation, and therefore, it is one of the technologies with the greatest potential for high-throughput, single-cell, and single-molecule analyses. Slipchip devices have achieved remarkable advances over the past decades, with its simplified molecular diagnostics gaining particular attention, especially during the COVID-19 pandemic and in various infectious diseases scenarios. Medical testing based on nucleic acid amplification in the Slipchip has become a promising alternative simple and rapid diagnostic tool in field situations. Herein, we present a comprehensive review of Slipchip device advances in molecular diagnostics, highlighting its use in digital recombinase polymerase amplification (RPA), loop-mediated isothermal amplification (LAMP), and polymerase chain reaction (PCR). Slipchip technology allows users to conduct reliable droplet transfers with high-throughput potential for single-cell and molecule analyses. This review explores the device's versatility in miniaturized and rapid molecular diagnostics. A complete Slipchip device can be operated without special equipment or skilled handling, and provides high-throughput results in minimum settings. This review focuses on recent developments and Slipchip device challenges that need to be addressed for further advancements in microfluidics technology.

On eliminating electrochemical impedance signal noise using Li metal in a non-aqueous electrolyte for Li ion secondary batteries

  • Park, Chul-Wan
    • Carbon letters
    • /
    • v.12 no.3
    • /
    • pp.180-183
    • /
    • 2011
  • Li metal is accepted as a good counter electrode for electrochemical impedance spectroscopy (EIS) as the active material in Li-ion and Li-ion polymer batteries. We examined the existence of signal noise from a Li-metal counter quantitatively as a preliminary study. We suggest an electrochemical cell with one switchable electrode to obtain the exact impedance signal of active materials. To verify the effectiveness of the switchable electrode, EIS measurements of the solid electrolyte interphase (SEI) before severe $Li^+$ intercalation to SFG6 graphite (at > ca. 0.25 V vs. Li/$Li^+$) were taken. As a result, the EIS spectra without the signal of Li metal were obtained and analyzed successfully for the following parameters i) $Li^+$ conduction in the electrolyte, ii) the geometric resistance and constant phase element of the electrode (insensitive to the voltage), iii) the interfacial behavior of the SEI related to the $Li^+$ transfer and residence throughout the near-surface (sensitive to voltage), and iv) the term reflecting the differential limiting capacitance of $Li^+$ in the graphite lattice.

Inertial Dynamic Effect on the Rates of Diffusion-Controlled Ligand-Receptor Reactions

  • Lee, Woo-Jin;Kim, Ji-Hyun;Lee, Sang-Youb
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.2973-2977
    • /
    • 2011
  • It has been known that the inertial dynamics has a little effect on the reaction rate in solutions. In this work, however, we find that for diffusion-controlled reactions between a ligand and a receptor on the cell surface there is a noticeable inertial dynamic effect on the reaction rate. We estimate the magnitude of the inertial dynamic effect by comparing the approximate analytic results obtained with and without the inertial dynamic effect included. The magnitude of the inertial dynamic effect depends on the friction coefficient of the ligand as well as on the relative scale of the receptor size to the distance traveled by the ligand during its velocity relaxation time.

A multiple level set method for modeling grain boundary evolution of polycrystalline materials

  • Zhang, Xinwei;Chen, Jiun-Shyan;Osher, Stanley
    • Interaction and multiscale mechanics
    • /
    • v.1 no.2
    • /
    • pp.191-209
    • /
    • 2008
  • In this paper, we model grain boundary evolution based on a multiple level set method. Grain boundary migration under a curvature-induced driving force is considered and the level set method is employed to deal with the resulting topological changes of grain structures. The complexity of using a level set method for modeling grain structure evolution is due to its N-phase nature and the associated geometry compatibility constraint. We employ a multiple level set method with a predictor-multicorrectors approach to reduce the gaps in the triple junctions down to the grid resolution level. A ghost cell approach for imposing periodic boundary conditions is introduced without solving a constrained problem with a Lagrange multiplier method or a penalty method. Numerical results for both uniform and random grain structures evolution are presented and the results are compared with the solutions based on a front tracking approach (Chen and Kotta et al. 2004b).

Development of Novel Power Control Algorithm Using Single DC-DC Converter and Inverter for Fuel Cell-Photovoltaic Hybrid System (단일 컨버터 및 인버터를 사용한 연료전지-태양광 복합발전시스템의 새로운 전력제어 알고리즘 개발)

  • Kim, Jong-Soo;Choe, Gyu-Yeong;Ko, Jung-Min;Lee, Byoung-Kuk;Lee, Tae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1039_1040
    • /
    • 2009
  • 본 논문에서는 특성이 다른 두 에너지원인 연료전지와 태양광을 최적의 조건으로 복합발전할 수 있도록 새로운 단일 컨버터 및 단일 인버터 구조 및 전력제어 알고리즘을 제안한다. 제안된 회로 및 알고리즘의 타당성을 컴퓨터 시뮬레이션과 실험을 통해 검증한다.

  • PDF

Comparative Study of Power Sharing Algorithm for Fuel Cell and Photovoltaic Hybrid Generation System of 2CON-1IN Type (2컨버터-1인버터 형태의 복합발전시스템 전력제어 알고리즘 비교분석)

  • Choe, Gyu-Yeong;Kim, Jong-Soo;Moon, Hee-Sung;Lee, Byoung-Kuk;Kim, Tae-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1041_1042
    • /
    • 2009
  • 본 논문에서는 연료전지 태양광 복합발전시스템의 2가지 전력제어 알고리즘을 제안하고 각각의 성능을 비교 분석하였다. 태양광의 MPPT제어 위치에 따라 2가지 전력제어 알고리즘이 적용되었으며 각 알고리즘에 따른 MPPT성능, DC link 안정성과 출력전력 특성이 비교 분석되었으며 시뮬레이션 및 실험을 통해 타당성을 검증하였다.

  • PDF

Experimental Characterization of Cyclic Deformation in Copper Using Ultrasonic Nonlinearity

  • Kim, C.S.;Park, Ik-Keun;Jhang, Kyung-Young;Kim, Noh-Yu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.3
    • /
    • pp.285-291
    • /
    • 2008
  • We have experimentally investigated the cyclic deformation in copper using ultrasonic nonlinearity. The observation and characterization of dislocation substructure have been conducted using transmission electron microscope and electron backscattered diffraction technique. The ultrasonic nonlinearity (${\beta}/{\beta}_0$) was measured by the harmonic generation technique after various fatigue cycles. The microstructural effect on the nonlinearity was discussed regarding the extent of dislocation substructures evolved from low cycle fatigue. The ultrasonic nonlinearity of copper monotonically increased with the fatigue cycles due to the evolution of dislocation cell substructures.