DOI QR코드

DOI QR Code

On eliminating electrochemical impedance signal noise using Li metal in a non-aqueous electrolyte for Li ion secondary batteries

  • Park, Chul-Wan (Mechanical Engineering and Mechanics, Drexel University)
  • Received : 2011.07.25
  • Accepted : 2011.09.01
  • Published : 2011.09.30

Abstract

Li metal is accepted as a good counter electrode for electrochemical impedance spectroscopy (EIS) as the active material in Li-ion and Li-ion polymer batteries. We examined the existence of signal noise from a Li-metal counter quantitatively as a preliminary study. We suggest an electrochemical cell with one switchable electrode to obtain the exact impedance signal of active materials. To verify the effectiveness of the switchable electrode, EIS measurements of the solid electrolyte interphase (SEI) before severe $Li^+$ intercalation to SFG6 graphite (at > ca. 0.25 V vs. Li/$Li^+$) were taken. As a result, the EIS spectra without the signal of Li metal were obtained and analyzed successfully for the following parameters i) $Li^+$ conduction in the electrolyte, ii) the geometric resistance and constant phase element of the electrode (insensitive to the voltage), iii) the interfacial behavior of the SEI related to the $Li^+$ transfer and residence throughout the near-surface (sensitive to voltage), and iv) the term reflecting the differential limiting capacitance of $Li^+$ in the graphite lattice.

Keywords

References

  1. Croce F, Nobili F, Deptula A, Lada W, Tossici R, D'Epifanio A, Scrosati B, Marassi R. An electrochemical impedance spectroscopic study of the transport properties of $LiNi_{0.75}Co_{0.25}O_2$. Electrochem Commun, 1, 605 (1999). http://dx.doi.org/10.1016/s1388-2481(99)00123-x.
  2. Springer TE, Zawodzinski TA, Wilson MS, Gottesfeld S. Characterization of polymer electrolyte fuel cells using AC impedance spectroscopy. J Electrochem Soc, 143, 587 (1996). http://dx.doi.org/10.1149/1.1836485.
  3. Scrosati B, Croce F, Persi L. Impedance spectroscopy study of PEO-based nanocomposite polymer electrolytes. J Electrochem Soc, 147, 1718 (2000). http://dx.doi.org/10.1149/1.1393423.
  4. Peled E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems--the solid electrolyte interphase model. J Electrochem Soc, 126, 2047 (1979). http://dx.doi. org/10.1149/1.2128859.
  5. Belharouak I, Johnson C, Amine K. Synthesis and electrochemical analysis of vapor-deposited carbon-coated $4LiFePO_4$. Electrochem Commun, 7, 983 (2005). http://dx.doi.org/10.1016/j.elecom.2005.06.019.
  6. Belharouak I, Amine K. $Li_2MTi_6O_{14}$ (M=Sr, Ba): new anodes for lithium-ion batteries. Electrochem Commun, 5, 435 (2003). http://dx.doi.org/10.1016/s1388-2481(03)00090-0.
  7. Nagasubramanian G. Two- and three-electrode impedance studies on 18650 Li-ion cells. J Power Sources, 87, 226 (2000). http://dx.doi.org/10.1016/s0378-7753(99)00469-3.
  8. Aurbach D, Zaban A, Schechter A, Ein-Eli Y, Zinigrad E, Markovsky B. The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries. J Electrochem Soc, 142, 2873 (1995). http://dx.doi.org/10.1149/1.2048658.
  9. Kanamura K, Tamura H, Shiraishi S, Takehara ZI. XPS analysis of lithium surfaces following immersion in various solvents containing $LiBF_4$. J Electrochem Soc, 142, 340 (1995). http://dx.doi.org/10.1149/1.2044000.
  10. Umeda M, Dokko K, Fujita Y, Mohamedi M, Uchida I, Selman JR. Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode. Part I. Graphitized carbon. Electrochim Acta, 47, 885 (2001). http://dx.doi.org/10.1016/s0013-4686(01)00799-x.
  11. Dokko K, Fujita Y, Mohamedi M, Umeda M, Uchida I, Selman JR. Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode. Part II. Disordered carbon. Electrochim Acta, 47, 933 (2001). http://dx.doi.org/10.1016/s0013-4686(01)00809-x.
  12. Dokko K, Mohamedi M, Umeda M, Uchida I. Kinetic study of Liion extraction and insertion at $LiMn_2O_4$ single particle electrodes using potential step and impedance methods. J Electrochem Soc, 150, A425 (2003). http://dx.doi.org/10.1149/1.1556596.
  13. Park CW. $Li^+$ storage characteristics in non-graphitizable carbons prepared from methylnaphthalene-derived isotropic pitch and graphitizable carbons prepared from needle cokes [PhD Thesis], Seoul National University, Seoul, Korea (2000).
  14. Levi MD, Aurbach D. Diffusion coefficients of lithium ions during intercalation into graphite derived from the simultaneous measurements and modeling of electrochemical impedance and potentiostatic intermittent titration characteristics of thin graphite electrodes. J Phys Chem B, 101, 4641 (1997). http://dx.doi.org/10.1021/jp9701911.
  15. Levi MD, Aurbach D. Frumkin intercalation isotherm--a tool for the description of lithium insertion into host materials: a review. Electrochim Acta, 45, 167 (1999). http://dx.doi.org/10.1016/s0013-4686(99)00202-9.

Cited by

  1. Electrochemical properties of PEO/PMMA blend-based polymer electrolytes using imidazolium salt-supported silica as a filler vol.39, pp.7, 2013, https://doi.org/10.1007/s11164-012-0839-8
  2. Preparation of well-controlled porous carbon nanofiber materials by varying the compatibility of polymer blends vol.63, pp.8, 2013, https://doi.org/10.1002/pi.4645