• Title/Summary/Keyword: cell infection

Search Result 1,711, Processing Time 0.031 seconds

Adenosine A3 Receptor Mediates ERK1/2- and JNK-Dependent TNF-α Production in Toxoplasma gondii-Infected HTR8/SVneo Human Extravillous Trophoblast Cells

  • Ye, Wei;Sun, Jinhui;Li, Chunchao;Fan, Xuanyan;Gong, Fan;Huang, Xinqia;Deng, Mingzhu;Chu, Jia-Qi
    • Parasites, Hosts and Diseases
    • /
    • v.58 no.4
    • /
    • pp.393-402
    • /
    • 2020
  • Toxoplasma gondii is an intracellular parasite that causes severe disease when the infection occurs during pregnancy. Adenosine is a purine nucleoside involved in numerous physiological processes; however, the role of adenosine receptors in T. gondii-induced trophoblast cell function has not been investigated until now. The goal of the present study was to evaluate the intracellular signaling pathways regulated by adenosine receptors using a HTR-8/SVneo trophoblast cell model of T. gondii infection. HTR8/SVneo human extravillous trophoblast cells were infected with or without T. gondii and then evaluated for cell morphology, intracellular proliferation of the parasite, adenosine receptor expression, TNF-α production and mitogen-activated protein (MAP) kinase signaling pathways triggered by adenosine A3 receptor (A3AR). HTR8/SVneo cells infected with T. gondii exhibited an altered cytoskeletal changes, an increased infection rate and reduced viability in an infection time-dependent manner. T. gondii significantly promoted increased TNF-α production, A3AR protein levels and p38, ERK1/2 and JNK phosphorylation compared to those observed in uninfected control cells. Moreover, the inhibition of A3AR by A3AR siRNA transfection apparently suppressed the T. gondii infection-mediated upregulation of TNF-α, A3AR production and MAPK activation. In addition, T. gondii-promoted TNF-α secretion was dramatically attenuated by pretreatment with PD098059 or SP600125. These results indicate that A3AR-mediated activation of ERK1/2 and JNK positively regulates TNF-α secretion in T. gondii-infected HTR8/SVneo cells.

Analysis of Somatostatin-Secreting Gastric Delta Cells according to Upper Abdominal Symptoms and Helicobacter pylori Infection in Children

  • Kim, Dong-Uk;Moon, Jin-Hwa;Lee, Young-Ho;Paik, Seung Sam;Kim, Yeseul;Kim, Yong Joo
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.23 no.3
    • /
    • pp.243-250
    • /
    • 2020
  • Purpose: Gastric delta cells (D-cells), which are somatostatin-secreting cells, are the main paracrine inhibitor of acid secretion. The number of D-cells was studied in children presenting with upper gastrointestinal (UGI) disease. Methods: We retrospectively investigated the number of D-cells in the gastric body and antrum through immunofluorescence examinations according to symptoms, endoscopic findings, and Helicobacter pylori infection in 75 children who visited Hanyang University Hospital Pediatrics. Results: The mean patient age was 12.2±3.3 years. The male-to-female ratio was 1:1.4. The mean D-cell number per high-power field in the antrum and body was 20.5 and 12 in children with substernal pain, 18.3 and 10.3 in vomiting, 22.3 and 6 in diarrhea, and 9.3 and 6 in abdominal pain, respectively (p>0.05). According to endoscopic findings, the mean D-cell number in the antrum and body was 14.3 and 6 with gastritis, 14 and 9.3 with reflux esophagitis, 16.7 and 8.7 with duodeno-gastric reflux, 19.3 and 12.7 with gastric ulcer, 16 and 13.7 with duodenitis, and 12.3 and 4 with duodenal ulcer, respectively (p>0.05). The D-cell number in the gastric body was 2.7 and 8.7 in children with current H. pylori infection and non-infected children, respectively (p=0.01), while those in the antrum were 15.5 and 14, respectively, with no statistical significance. Conclusion: The D-cell number was lower in the gastric body of children with current H. pylori infection. Further studies concerning peptide-secreting cells with a control group would provide information about the pathogenic pathways of UGI disorder.

Analysis of Immune Responses Against Nucleocapsid Protein of the Hantaan Virus Elicited by Virus Infection or DNA Vaccination

  • Woo Gyu-Jin;Chun Eun-Young;Kim Keun Hee;Kim Wankee
    • Journal of Microbiology
    • /
    • v.43 no.6
    • /
    • pp.537-545
    • /
    • 2005
  • Even though neutralizing antibodies against the Hantaan virus (HTNV) has been proven to be critical against viral infections, the cellular immune responses to HTNV are also assumed to be important for viral clearance. In this report, we have examined the cellular and humoral immune responses against the HTNV nucleocapsid protein (NP) elicited by virus infection or DNA vaccination. To examine the cellular immune response against HTNV NP, we used $H-2K^b$ restricted T-cell epitopes of NP. The NP-specific $CD8^+$ T cell response was analyzed using a $^{51}Cr-release$ assay, intracellular cytokine staining assay, enzyme-linked immunospot assay and tetramer binding assay in C57BL/6 mice infected with HTNV. Using these methods, we found that HTNV infection elicited a strong NP-specific $CD8^+$ T cell response at eight days after infection. We also found that several different methods to check the NP-specific $CD8^+$ T cell response showed a very high correlation among analysis. In the case of DNA vaccination by plasmid encoding nucleocapsid gene, the NP-specific antibody response was elicited $2\~4$ weeks after immunization and maximized at $6\~8$ weeks. NP-specific $CD8^+$ T cell response reached its peak 3 weeks after immunization. In a challenge test with the recombinant vaccinia virus expressing NP (rVV-HTNV-N), the rVV-HTNV-N titers in DNA vaccinated mice were decreased about 100-fold compared to the negative control mice.

Anti-apoptosis effects by Eimeria tenella infection in Madin-Darby bovine kidney cells

  • Lee, Hyun-A;Hong, Sun-Hwa;Chung, Yung-Ho;Kim, Ok-Jin
    • Korean Journal of Veterinary Service
    • /
    • v.35 no.2
    • /
    • pp.105-109
    • /
    • 2012
  • Apoptosis is a host defense mechanism that the cell uses to limit production of infectious pathogens. Although many bacteria, viruses and parasites can induce apoptosis in infected cells, some pathogens usually exhibit the ability to suppress the induction of apoptosis in the infected cells. Sophisticated evasion strategies of obligate intracellular parasites, in particular prevention of host cell apoptosis, are necessary to ensure successful replication. To study the ability of Eimeria tenella in this regard, in vitro experiments were performed applying Madin-Darby bovine kidney (MDBK) cells as host cell. We have demonstrated that productive infection of adherent cell lines by E. tenella resulted in an anti-apototic effect. This phenomenon was confirmed using in situ terminal deoxynucleotidyl transferase-mediated (TdT) deoxyuridine triphosphates (dUTP)-fluorescein nick end labeling (TUNEL) assay to detect apoptosis. Therefore, E. tenella could complete its cycle of productive infection while inducing anti-apoptosis in the infected cells. This finding might have implications for the pathobiology of E. tenella and other Eimeria species.

Characterization of Virulence Function of Pseudomonas cichorii Avirulence Protein E1 (AvrE1) during Host Plant Infection

  • Huong, Duyen Do Tran;Rajalingam, Nagendran;Lee, Yong Hoon
    • The Plant Pathology Journal
    • /
    • v.37 no.5
    • /
    • pp.494-501
    • /
    • 2021
  • Pseudomonas cichorii secretes effectors that suppress defense mechanisms in host plants. However, the function of these effectors, including avirulence protein E1 (AvrE1), in the pathogenicity of P. cichorii, remains unexplored. In this study, to investigate the function of avrE1 in P. cichorii JBC1 (PcJBC1), we created an avrE1-deficient mutant (JBC1ΔavrE1) using CRISPR/Cas9. The disease severity caused by JBC1ΔavrE1 in tomato plants significantly decreased by reducing water soaking during early infection stage, as evidenced by the electrolyte leakage in infected leaves. The disease symptoms caused by JBC1ΔavrE1 in the cabbage midrib were light-brown spots compared to the dark-colored ones caused by PcJBC1, which indicates the role of AvrE1 in cell lysis. The avrE1-deficient mutant failed to elicit cell death in non-host tobacco plants. Disease severity and cell death caused by JBC1ΔavrE1 in host and non-host plants were restored through heterologous complementation with avrE1 from Pseudomonas syringae pv. tomato DC3000 (PstDC3000). Overall, our results indicate that avrE1 contributes to cell death during early infection, which consequently increases disease development in host plants. The roles of PcJBC1 AvrE1 in host cells remain to be elucidated.

Visualization of Phytophthora palmivora Infection in Oil Palm Leaflets with Fluorescent Proteins and Cell Viability Markers

  • Ochoa, Juan C.;Herrera, Mariana;Navia, Monica;Romero, Hernan Mauricio
    • The Plant Pathology Journal
    • /
    • v.35 no.1
    • /
    • pp.19-31
    • /
    • 2019
  • Bud rot (BR) is the most devastating disease affecting oil palm (Elaeis guineensis) crops in Colombia. Its causal agent, Phytophthora palmivora, initiates the infection in immature oil palm leaflets producing necrotic lesions, followed by colonization of opportunistic necrotrophs, which increases disease damage. To improve the characterization of the disease, we transformed P. palmivora using Agrobacterium tumefaciens-mediated transformation (ATMT) to include the fluorescent proteins CFP-SKL (peroxisomal localization), eGFP and mRFP1 (cytoplasmic localization). The stability of some transformants was confirmed by Southern blot analysis and single zoospore cultures; additionally, virulence and in vitro growth were compared to the wild-type isolate to select transformants with the greatest resemblance to the WT isolate. GFP-tagged P. palmivora was useful to identify all of the infective structures that are commonly formed by hemibiotrophic oomycetes, including apoplastic colonization and haustorium formation. Finally, we detected cell death responses associated with immature oil palm tissues that showed reduced susceptibility to P. palmivora infection, indicating that these tissues could exhibit age-related resistance. The aim of this research is to improve the characterization of the initial disease stages and generate cell biology tools that may be useful for developing methodologies for early identification of oil palm materials resistant or susceptible to BR.

Stress Granules Inhibit Coxsackievirus B3-Mediated Cell Death via Reduction of Mitochondrial Reactive Oxygen Species and Viral Extracellular Release

  • Ji-Ye Park;Ok Sarah Shin
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.5
    • /
    • pp.582-590
    • /
    • 2023
  • Stress granules (SGs) are cytoplasmic aggregates of RNA-protein complexes that form in response to various cellular stresses and are known to restrict viral access to host translational machinery. However, the underlying molecular mechanisms of SGs during viral infections require further exploration. In this study, we evaluated the effect of SG formation on cellular responses to coxsackievirus B3 (CVB3) infection. Sodium arsenite (AS)-mediated SG formation suppressed cell death induced by tumor necrosis factor-alpha (TNF-a)/cycloheximide (CHX) treatment in HeLa cells, during which G3BP1, an essential SG component, contributed to the modulation of apoptosis pathways. SG formation in response to AS treatment blocked CVB3-mediated cell death, possibly via the reduction of mitochondrial reactive oxygen species. Furthermore, we examined whether AS treatment would affect small extracellular vesicle (sEV) formation and secretion during CVB3 infection and modulate human monocytic cell (THP-1) response. CVB3-enriched sEVs isolated from HeLa cells were able to infect and replicate THP-1 cells without causing cytotoxicity. Interestingly, sEVs from AS-treated HeLa cells inhibited CVB3 replication in THP-1 cells. These findings suggest that SG formation during CVB3 infection modulates cellular response by inhibiting the release of CVB3-enriched sEVs.

Effect of Bovine and Human Lactoferrin on MA 104 Cell Infected with Human Rotavirus (락토페린이 국내분리 유아 로타바이러스의 MA 104세포 감염에 미치는 영향)

  • Cha, Kwang-Jong;Yu, Dae-Yeul;Lee, Chong-Kee;Yu, Jae-Hyeun
    • The Journal of Korean Society of Virology
    • /
    • v.29 no.2
    • /
    • pp.87-97
    • /
    • 1999
  • It has long been known that lactoferrin prevents human beings from infection of virus. To prove this activity of lactoferrin, we evaluated the activities of different lactoferrins to an isolate human rotavirus K-21. Bovine lactoferrin inhibited infection of K-21 to MA-104 cell at the concentration of $25.9\;{\mu}M$ whereas bovine hydrolysed lactoferrin prevented rotavirus infection at $103.8\;{\mu}M$. However human lactoferrin prevented infection of K-21 at the concentration of $217.5\;{\mu}M$. These data suggested that lactoferrin activity may be unaffected by the intestinal digestive enzymes and bovine lactoferrin is more active than human lactoferrin with respect to prevention of rotavirus infection.

  • PDF

Effect of Oral Administration of Korean Red Ginseng on Influenza A (H1N1) Virus Infection

  • Kim, Jin-Young;Kim, Hyoung-Jin;Kim, Hong-Jin
    • Journal of Ginseng Research
    • /
    • v.35 no.1
    • /
    • pp.104-110
    • /
    • 2011
  • Korean red ginseng (RG), which is a ginseng treated by heating and steaming, has biological activity similar to Panax ginseng. The effect of ginseng on influenza infection has not been studied although it is known to have a broad range of biological activities. The aim of the study is to investigate the effect of RG extract on influenza A (H1N1) virus infection. We investigated the inhibitory effect of RG extract on plaque formation by influenza A virus in a cell-based plaque assay, and the effect of orally administered RG on influenza A virus infection in mice. RG extract, which was applied at a non-cytotoxic concentration, inhibited plaque formation by influenza A virus in the cell-based plaque assay. The orally administered RG extract ameliorated body weight loss and significantly increased survival in mice infected with influenza A virus. Our results suggest that RG extract has components that reduce the severity of infection by influenza A virus and could potentially be used as a complement to treatment of influenza A virus infections.

Monocytes Contribute to IFN-β Production via the MyD88-Dependent Pathway and Cytotoxic T-Cell Responses against Mucosal Respiratory Syncytial Virus Infection

  • Tae Hoon Kim;Chae Won Kim;Dong Sun Oh;Hi Eun Jung;Heung Kyu Lee
    • IMMUNE NETWORK
    • /
    • v.21 no.4
    • /
    • pp.27.1-27.12
    • /
    • 2021
  • Respiratory syncytial virus (RSV) is the leading cause of respiratory viral infection in infants and children. However, little is known about the contribution of monocytes to antiviral responses against RSV infection. We identified the IFN-β production of monocytes using IFN-β/YFP reporter mice. The kinetic analysis of IFN-β-producing cells in in vivo RSV-infected lung cells indicated that monocytes are recruited to the inflamed lung during the early phase of infection. These cells produced IFN-β via the myeloid differentiation factor 88-mediated pathway, rather than the TLR7- or mitochondrial antiviral signaling protein-mediated pathway. In addition, monocyte-ablated mice exhibited decreased numbers of IFN-γ-producing and RSV Ag-specific CD8+ T cells. Collectively, these data indicate that monocytes play pivotal roles in cytotoxic T-cell responses and act as type I IFN producers during RSV infection.