• Title/Summary/Keyword: cell hydrophobicity

Search Result 95, Processing Time 0.025 seconds

Structure-Activity Relationships of 9-mer Antimicrobial Peptide analogue of Protaetiamycine, 9Pbw2

  • Kim, Jin-Kyoung;Lee, Eun-Jung;Jung, Ki-Woong;Kim, Yang-Mee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.15 no.1
    • /
    • pp.1-13
    • /
    • 2011
  • 9Pbw2 is a 9-mer analog of protaetiamycine derived from the larvae of the beetle Protaetia brevitarsis. Previously, we designed four 9-mer peptide analogues to optimize the balance between the hydrophobicity and cationicity of the peptides and to increase bacterial cell selectivity. Among them, 9Pbw2 has high antibacterial activity without cytotoxicity. The results obtained in previous study suggest that the bactericidal action of 9Pbw2 may be attributed to the inhibition of the functions of intracellular components after penetration of the bacterial cell membrane. In order to understand structure-activity relationships, we determined the three-dimensional structure of 9Pbw2 in 200 mM DPC micelle by NMR spectroscopy. 9Pbw2 has one hydrophobic turn helix from $Trp^3$ to $Arg^8$ and positively charged residues at the N- and C-terminus. This result suggested that positively charged residues from position at the C-terminus in 9Pbw2 may be important for the primary binding to the negatively charged phospholipid head groups in bacterial cell membranes and hydrophobic residues in the middle portion face toward the acyl chains of the hydrophobic lipid in the bacterial cell membrane.

Improvement of Performance of Anti-reflective Coating Film Using Methyltrimethoxysilane (Methyltrimethoxysilane을 이용한 반사방지 코팅막의 성능 향상)

  • Keum, Young-Sub;Kim, Hyo-Sub;Park, Chu-Sik;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.400-405
    • /
    • 2015
  • Traditional anti-reflective (AR) coating films prepared using tetraethylorthosilicate (TEOS) as a precursor absorbs water easily in addition to having a weak abrasion resistance. To improve the transmittance, hydrophobicity and abrasion resistance of AR coating film, various AR coating films were prepared using methyltrimethoxysilane (MTMS) as a precursor in addition to introducing a fluoroalkylsilane, acid catalyst, base catalyst and acid-base two step catalyst. The prepared AR coating films were then characterized by UV-Vis spectroscopy, contact angle analyzer, atomic force microscope (AFM), pencil scratch hardness test and cross-cut test. As a result, the transmittance of bare glass was 90.5%, while that of AR coating glass increased to 94.8% at curing temperature of $300^{\circ}C$. When the fluoroalkylsilane was added, the water contact angle of AR coating film increased from $96.3^{\circ}$ to $108^{\circ}$, indicating that the hydrophobicity of the film was greatly improved. The abrasion resistance of AR coating film was also improved by the acid catalyst, whereas the transmittance increased by the base catalyst. In the case of AR coating film prepared using an acid-base two step catalyzed reaction, both the transmittance and abrasion resistance of the film was synergistically enhanced as compared with those of AR coating films prepared without introduction of a catalyst.

Probiotic Properties of Lactic Acid Bacteria Isolated Traditional Fermented Foods (전통발효식품 유래 유산균의 프로바이오틱스 특성 연구)

  • Kim, Eun-Ji;Jo, Seung-Wha;Kim, Jin-Kyeong;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.29 no.6
    • /
    • pp.697-704
    • /
    • 2019
  • This study performed to investigate the probiotic properties of lactic acid bacteria 200 strains isolated from traditional fermented foods. Based on being higher tolerance to bile salts and showing higher acid resistance, 4 LAB Strains were selected in the screening experiment; Lactobacillus plantarum SRCM 102224, Lb. plantarum SRCM102227, Lb. paracasei SRCM102329, Lb. paracasei SRCM102343. Antibacterial activity against various pathogens, acid and bile salt tolerance, hemolytic phenomenon, cell surface hydrophobicity, and antibiotic resistance were examined. Among the tested strains, SRCM 102343 (95.9%) was highly observed hydrophobicity compared to Lb. rhmanosus GG (13.4%) as control. In this study, the in vitro adhesion properties of 4 strains of LAB was investigated using human intestinal caco-2 cell cultures. SRCM102329 and SRCM102343showed higher adherence to caco-2 cells than Lb. rhamnosus GG. The antibacterial activities of 4 strains LAB were investigated. the 3 strains showing strongly antimicrobial activity against Escherichia coli ATCC10798, Staphylococcus aureus KCCM11593, Listeria invanovii KCTC3444, Bacillus cereus ATCC11778 and S. enterica serovar. Typhi KCTC1926. These results suggest that selected strains have good probiotic potential for application in functional foods.

Effects of the Presence of Nonionic surfactants on Diesel Biodegradation (비이온계 계면활성제가 미생물의 디이젤 분해에 미치는 영향)

  • Lee, Hyo-Sang;Jeong, Gi-Hyeong;Kim, Jeong-Rak;Lee, Gi-Se
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.424-425
    • /
    • 2000
  • The effects of the presence of commercial non-ionic surfactants on the cell growth and diesel degradation by Pseudomonas sp. OSD were studied. Most surfactants inhibited the diesel biodegradation at high concentration(1000mg/1). However, some surfactants showed no inhibition at lower concentrations. Tween 20, Brij 58, Brij 78 were not inhibitory to the diesel biodegradation even at high concentration. These chosen surfactants has relatively high HLB values. There exists complicated relationship for diesel bioremediation between cell hydrophobicity, surfactant HLB, contaminants, an soil.

  • PDF

Production Enhancement of Menthol in Suspension Cultures of Peppermint Using Cyclodextrin (Peppermint 세포 현탁배양에서 Cyclodextrin을 이용한 Menthol의 생산성 증대)

  • 조규헌;임철호;박세춘;신명근
    • KSBB Journal
    • /
    • v.13 no.1
    • /
    • pp.26-30
    • /
    • 1998
  • The suspension cultures of Mentha piperita produce menthol which has very low solubility in water due to its hydrophobicity. This can be considered as a factor for its low production in the suspension suspension cultures. Cyclodextrin has the hydrophobic cavity inside the molecule in which menthol can be captured and allow to form a stable complex. The suspension culture of Mentha piperita showed 70% higher production enhancement in the medium containing 1.5%(w/v) $\beta$-cyclodextrin than the control. $\beta$-cyclodextrin had no adverse effect on the cell growth and showed the best result among $\alpha$-, $\beta$- and $\gamma$-cyclodextrins tested in terms of menthol production. We demonstrated that $\beta$-cyclodextrin can be used to enhance the production of menthol in the suspension cultures by capturing hydrophobic menthol into the cavity of cyclodextrin molecules.

  • PDF

Studies on the Characteristics of the Catalyst Layer of the PEMFC Electrode (고분자전해질용 연료전지의 전극 촉매중 특성에 관한 연구)

  • Sridhar, Parthasarathi;Ihm, Jae-Wook;Yu, Hyung-Kyun;Ryu, Ho-Jin
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.65-67
    • /
    • 2003
  • The present paper highlights on the need to understand the correlation of the characteristics of the catalyst layer with the performance of the polymer electrolyte membrane fuel cell (PEMFC). This paper deals with the correlation of the platinum loading in the catalyst layer and the performance of the polymer electrolyte membrane fuel cell and also the correlation of the required hydrophilicity/hydrophobicity in the catalyst layer to get the optimum performance under given operating conditions.

The Potential Probiotic and Functional Health Effects of Lactic Acid Bacteria Isolated from Traditional Korean Fermented Foods (한국 전통발효식품에서 분리한 유산균의 프로바이오틱스 특성 및 건강기능성 연구)

  • Ohn, Jeong-Eun;Seol, Min-Kyeong;Bae, Eun-Yeong;Cho, Young-Je;Jung, Hee-Young;Kim, Byung-Oh
    • Journal of Life Science
    • /
    • v.30 no.7
    • /
    • pp.581-591
    • /
    • 2020
  • This study investigated the probiotic properties and physiological activities of Korean fermented foods such as sikhae, young radish kimchi, and bean-curd dregs. Among the isolated lactic acid bacteria, Pediococcus inopinatus BZ4, Lactobacillus plantarum SH1, Lactobacillus brevis SH14, Pediococcus pentosaceus YMT1, and Leuconostoc mesenteroides YMT6 demonstrated a greater than 60% survival rate at pH 2.5, along with an excellent survival rate even at 0.3% bile acid. These five bacteria showed strong flocculation ability in autoaggregation and coaggregation tests, indirectly clustering useful micro-organisms and inhibiting the attachment of pathogenic bacteria. In a cell surface hydrophobicity test, these bacteria showed adhesion to three solvents (ethyl acetate, chloroform, and xylene) and high hydrophobicity, thereby indicating excellent indirect cell adhesion to intestinal cells. The cell-free supernatants and intracellular extracts of the five lactic acid bacteria showed antioxidative activity in the form of 2,2-Diphenyl-1-picrylhydrazyl and 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging ability and lipid peroxidation inhibition. Antimicrobial activities were also observed in four pathogenic bacteria, namely E. coli KCTC 2571, H. pylori HPKCTC B0150, L. monocytogenes KCTC 13064, and S. aureus KCTC 1916. These results demonstrate that these five lactic acid bacteria could be used as probiotics with antioxidant and antimicrobial properties.

Experimental Analysis of GDL Degradation in PEM Fuel Cell (고분자전해질형 연료전지 가스확산층의 내구 성능 저하에 관한 실험적 분석)

  • Ha, Tae-Hun;Park, Jae-Man;Cho, Jun-Hyun;Min, Kyoung-Doug;Lee, Eun-Suk;Jung, Ji-Young;Kim, Do-Hun;Jin, Yong-Won;Lee, Dae-Han
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.132-132
    • /
    • 2009
  • To achieve the commercialization of PEM fuel cell, the durability problem must be solved. Recently, many researchers have focused on this durability problem and degradation studies about membrane and electrode have been reported. But durability characteristics of gas diffusion layer is not much reported yet. Durability of GDL is very important to maintain the performance of PEM fuel cell because the main function of GDL is a path of fuel and water and the GDL degradation causes the loss of the GDL function. In this study, the degradation of GDL, especially, the mechanical degradation process was investigated with the leaching test. The effect of water dissolution was observed through the test and the amount of GDL degradation was measured with various measurement methods such as weight measurement, static contact angle measurement, scanning electron microscope. After 2,000 hours test, the GDL showed structural damage and loss of hydrophobicity.

  • PDF

Cell Surface Characteristics of Lactobacillus acidophilus -Characterization of Regularly Arranged Proteins in the Outer Cell Wall Layer and Cell-Surface Hydrophobicity- (Lactobacillus acidophilus의 세포표층의 성상 -세포벽외층의 규칙적 배열구조 단백질의 성상과 세포표면 소수성 -)

  • 정영건;안장연
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.19 no.1
    • /
    • pp.94-106
    • /
    • 1990
  • 사람들이나 동물의 소화관의 상재균으로서 중요한 Lactobacillus acidophilus의 여러균주를 사용하여 세포표면의 성상을 조사하였다. 불리한 세포벽의 negative 염색한 표본을 전자현미경으로 검토한 결과 사용한 21주중 15주는 세포벽외층에 단백질로 구성딘 regular array를 생산하고 있음을 알았다. RA를 구성하는 단백질의 분자량은 41KDa-48KDa이었다 아미노사노성 및 Staphylococcus au-reus V8 protease로 한정분해 후 및 N-chlorosuccini-mide로 부분절단후의 peptide map에서 Johnson등의 분류의 subgroup A-1에 속하는 균주가 생산하는 RA단백질은 불균질하였으나 그외 균주의 RA단백질은 같은 subgroup에 속하고 있어도 불균질하였음을 알았다 따라서 RA단백질은 불균질하였으나 그외 균주의 RA단백질은 같은 subgroup에 속하고 있어도 불균질하였음을 알았다 따라서 RA생산의 유무 및 RA단백질의 분자량측정과 peptide mapping을 행하면 지금까지 행해온 DNA-hybridization과 같은 복잡한 절차를 사용하지 않아도 subgroup A-1의 L. acidophilus가 동정 가능함을 알았다 L acidophilus의 세포표면소수성은 일반적으로 RA를 생산하지 않는 균주보다는 RA를 생사하는 균주에 높은 것이많았다 RA생산균주에 있어서는 RA단백질은 세포표면소수성과 직접관계하고 있는 것은 적었다.

  • PDF

Simple Analysis for Interaction between Nanoparticles and Fluorescence Vesicle as a Biomimetic Cell for Toxicological Studies

  • Umh, Ha Nee;Kim, Younghun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.3998-4002
    • /
    • 2012
  • With continuing progress of nanotechnologies and various applications of nanoparticles, one needs to develop a quick and fairly standard assessment tool to evaluate cytotoxicity of nanoparticles. However, much cytotoxicity studies on the interpretation of the interaction between nanoparticles and cells are non-mechanistic and time-consuming. Here, we propose a simple screening method for the analysis of the interaction between several AgNPs (5.3 to 64 nm) and fluorescence-dye containing vesicles ($12{\mu}m$) acting as a biomimetic cell-membrane. Fluorescence-dye containing vesicle was prepared using a fluorescence probe (1,6-diphenyl-1,3,5-hexatryene), which was intercalated into the lipid bilayer due to their hydrophobicity. Zeta potential of all materials except for bare-AgNPs (+32.8 mV) was negative (-26 to -54 mV). The morphological change (i.e., rupture and fusion of vesicle, and release of dye) after mixing of the vesicle and AgNPs was observed by fluorescence microscopy, and fluorescence image were different with coating materials and surface charge of x-AgNPs. In the results, we found that the surface charge of nanoparticles is the key factor for vesicle rupture and fusion. This proposed method might be useful for analyzing the cytotoxicity of nanoparticles with cell-membranes instead of in vitro or in vivo cytotoxicity tests.