DOI QR코드

DOI QR Code

Structure-Activity Relationships of 9-mer Antimicrobial Peptide analogue of Protaetiamycine, 9Pbw2

  • Kim, Jin-Kyoung (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Lee, Eun-Jung (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Jung, Ki-Woong (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Kim, Yang-Mee (Department of Bioscience and Biotechnology, Konkuk University)
  • Received : 2011.05.07
  • Accepted : 2011.05.31
  • Published : 2011.06.20

Abstract

9Pbw2 is a 9-mer analog of protaetiamycine derived from the larvae of the beetle Protaetia brevitarsis. Previously, we designed four 9-mer peptide analogues to optimize the balance between the hydrophobicity and cationicity of the peptides and to increase bacterial cell selectivity. Among them, 9Pbw2 has high antibacterial activity without cytotoxicity. The results obtained in previous study suggest that the bactericidal action of 9Pbw2 may be attributed to the inhibition of the functions of intracellular components after penetration of the bacterial cell membrane. In order to understand structure-activity relationships, we determined the three-dimensional structure of 9Pbw2 in 200 mM DPC micelle by NMR spectroscopy. 9Pbw2 has one hydrophobic turn helix from $Trp^3$ to $Arg^8$ and positively charged residues at the N- and C-terminus. This result suggested that positively charged residues from position at the C-terminus in 9Pbw2 may be important for the primary binding to the negatively charged phospholipid head groups in bacterial cell membranes and hydrophobic residues in the middle portion face toward the acyl chains of the hydrophobic lipid in the bacterial cell membrane.

Keywords

References

  1. R. E. W. Hancock, and H. G. Sahl, Nat. Biotechnol. 24, 1551. (2006). https://doi.org/10.1038/nbt1267
  2. R. M. Epand, and H. J. Vogel, Biochim. Biophys. Acta 1462, 11. (1999). https://doi.org/10.1016/S0005-2736(99)00198-4
  3. S. Chilukuri, FEMS Microbiology Letters 160, 91. (1998). https://doi.org/10.1111/j.1574-6968.1998.tb12896.x
  4. R. E. Hancock, and A. Rozek, FEMS Microbiol. Lett. 206, 143. (2002). https://doi.org/10.1111/j.1574-6968.2002.tb11000.x
  5. J. S. Hwang, B. R. Kang, S. R. Kim, E. Y. Yun, K. H. Park, J. P. Jeon, S. H. Nam, H. J. Suh, M. Y. Hong, and I. Kim, Int. J. Indust. Entomol. 17, 131. (2008).
  6. S. Shin, J. K. Kima, J. Y. Lee., K.W. Jung, J. S. Hwang, J. Lee, D. G. Lee, I. Kim, S. Y. Shin, and Y. Kim, J. Pept. Sci. 15, 559. (2009). https://doi.org/10.1002/psc.1156
  7. A. Derome, and M. Willamson, J. Magn. Reson. 88, 177. (1990).
  8. A. Bax, and D. G. Davis, J. Magn. Reson. 65, 355. (1985).
  9. S. Macura, and R.R. Ernst, Mol. Phys. 41, 95. (1980). https://doi.org/10.1080/00268978000102601
  10. A. Bax, and D. G. Davis, J. Magn. Reson. 63, 207. (1985).
  11. G. Bodenhausen, and D. J. Ruben, J. Chem. Phys. Lett. 69, 185. (1980). https://doi.org/10.1016/0009-2614(80)80041-8
  12. A. T. Brunger, X-PLOR Manual, Version 3.1, Yale University, New Haven, CT (1993).
  13. G. M. Clore, and A. M. Gronenborn, CRC. Rev. in Biochem. Biol. 24, 479. (1989). https://doi.org/10.3109/10409238909086962
  14. G. M. Clore, and A. M. Gronenborn, Protein Science 3, 372. (1994).
  15. K. Wuthrich, M. Billeter, and W. Braun, J. Mol. Biol. 169, 949. (1983). https://doi.org/10.1016/S0022-2836(83)80144-2
  16. G. M. Clore, A. M. Gronenborn, M. Nilges, and C. A. Ryan, Biochemistry 26, 8012. (1987). https://doi.org/10.1021/bi00398a069
  17. M. Nilges, G. M. Clore, and A. M. Gronenborn, FEBS Lett. 229, 317. (1988). https://doi.org/10.1016/0014-5793(88)81148-7
  18. K. F. Morris, and C. S. Johnson, J. Am. Chem.114, 3139. (1992). https://doi.org/10.1021/ja00034a071
  19. A. Chattopadhyay, S. S. Rawat, D. V. Greathouse, D. A. Kelkar, and R. E. Koeppe, Biophys. J. 95, 166. (2008). https://doi.org/10.1529/biophysj.107.124206
  20. R. Domanov, Y. Pietiainen, V. P. Kontinen, and P. K. Kinnunen, Biochim Biophys Acta 1778, 983. (2008). https://doi.org/10.1016/j.bbamem.2007.11.016