• Title/Summary/Keyword: cell growth rate

Search Result 1,552, Processing Time 0.025 seconds

Kinetics and Modelling of Cell Growth and Substrate Uptake in Centella asiatica Cell Culture

  • Omar, Rozita;Abdullah, M.A.;Hasan, M.A.;Rosfarizan, M.;Marziah, M.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.3
    • /
    • pp.223-229
    • /
    • 2006
  • In this study, we have conducted kinetics and modelling studies of Centella asiatica cell growth and substrate uptake, in an attempt to evaluate cell growth for a better understanding and control of the process. In our bioreactor cultivation experiment, we observed a growth rate of 0.18/day, a value only 20% higher than was seen in the shake flask cultivation trial. However, the observed maximum cell dry weight in the shake flask, 10.5g/L, was 14% higher than was achieved in the bioreactor. Ninety seven percentage confidence was achieved via the fitting of three unstructured growth models; the Monod, Logistic, and Gompertz equations, to the cell growth data. The Monod equation adequately described cell growth in both cultures. The specific growth rate, however, was not effectively predicted with the Logistic and Gompertz equations, which resulted in deviations of up to 73 and 393%, respectively. These deviations in the Logistic and Gompertz models may be attributable to the fact that these models were developed for substrate-independent growth and fungi growth, respectively.

Optimization of Switching Time from Growth to Product Formation for Maximum Productivity of Recombinant Escherichia coli Fermentation (유전자 재조합 대장균 발효의 최대 생산성을 위한 생육에서 제품 생성으로 전환시기의 최적화)

  • Anant Y. Patkar
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.4
    • /
    • pp.394-400
    • /
    • 1990
  • Maximization of productivity of recombinant cell fermentations requires consideration of the inverse relationship between the host cell growth rate and product formation rate. The problem of maximizing a weighted performance index was solved by using optimal control theory for recombinant E. coli fermentation. Concentration of a growth inhibitor was used as a control variable to manipulate the specific growth rate, and consequently the cloned-gene expression rate. Using a simple unstructured model to describe the main characteristics of this system, theoretical analysis showed that the optimal control profile results in an initial high growth rate phase followed by a low growth rate and high product formation rate phase. Numerical calculations were done to determine optimal switching times from the growth to the production stage for two representative cases corresponding to different dependency of the product formation rate on the growth rate. For the case when product formation rate is sensitive to the specific growth rate, the optimized operation yields about 60% increase in the final product concentration compared with a simple batch fermentation.

  • PDF

On-line Analysis of Phellinus linteus WI-001 Fermentation Parameters. (Phellinus linteus WI-001 발효에 배양공정 parameter의 온라인 분석)

  • 김종래;권호균;전계택;이계관
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.5
    • /
    • pp.298-302
    • /
    • 2000
  • Fermentation parameters were estimated by use of a vent gas analyzer coupled to a computer data acquisition system in cultivation of Phellinus linteus WI-001, pro-ducer of polysaccharides known to have potent anticancer activities. Oxygen uptake rate(OUR), a critical indicator of the cells activities, was calculated by applying oxygen mass balance. In addition, by dividing the oxygen uptake rate hy the total oxygen consumed, on-line estimation of the cells specific growth rate was successfully done. It was also possible to estimate cell concentration directly bt use of oxygen-cell yield($Y_{x/o}$ ) which was obtained based on a correlation between cell growth and total oxygen consumed.

  • PDF

Regulation of Tylosin Biosynthesis by Cell Growth Rate in Streptomyces fradiae (Streptomyces fradiae에서 균 성장속도에 의한 tylosin 생합성 조절)

  • 강현아;이정현;이계준
    • Korean Journal of Microbiology
    • /
    • v.25 no.4
    • /
    • pp.353-359
    • /
    • 1987
  • The aim of the present study was to investigate the effects of growth rate on the biosynthesis of tylosin in Streptomyces fradiae. In order to elucidate the relation between the growth rate and the tylosin formation rate, the activities of enzymes involved in oxaloacetate metabolism were determined using cells grown at different growth rates in chemostats. As the results, it was found that the specific rate of tylosin formation($q_{p}$) was closely related to the specific cell growth rate and the maximum value of $q_{p}$ was 1.1mg tylosin, $q_{p}$ cell, $0.013h^{-1}$ at the growth rate $0.013h^{-1}$. However further increase in the growth rate over $0.013h^{-1}$ resulted in apparent decrease of $1_{p}$. The synthesis and activities of citrate synthase, aspartate aminotransferase, and PEP carboxylase were very low at lower growth rate. On the other hand, the activity and synthesis of methylmalonyl-CoA carboxyltransferase was closely related to tylosin formation. Therefore it was concluded that tylosin formation was apparently controlled by the growth rate.

  • PDF

Application of Oxygen Uptake Rate Measured by a Dynamic Method for Analysis of Related Fermentation Parameters in Cyclosporin A Fermentation:Suspended and Immobilized Cell Cultures

  • Chun, Gie-Taek;Agathos, S.N.
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.1055-1060
    • /
    • 2001
  • Experimental data for the on-line estimation of cell concentration and growth rate are presented. For this purpose, we utilized the on-line calculation of the oxygen uptake rate (OUR), which was derived from a liquid phase dynamic mass balance for the oxygen during the active growth phase in cyclosporin A (CyA) fermentation. The cell yield coefficient, based on the oxygen $(Y_{x/o})$for both suspended and immobilized cells of Tolypocladium inflatum, was estimated as $1.9 gDCW/gO_2$ from a very good linear correlation between the cell mass produced and the total oxygen consumed. The calculated yield showed a good agreement with the value of $(Y_{x/o})$ generated from the correlation between the cell growth rate and the oxygen uptake rate. In addition, further experimental data are given, which were also applied to determine the specific oxygen uptake rate of T. inflatum cells during the exponential phase of CyA fermentation. A theoretical basis for the analysis of these fermentation parameters is also provided.

  • PDF

Photosynthetic Characteristics and Cell Quota of Nitrogen and Phosphorus in Scenedesmus quadricauda under P Limitation (인제한에 따른 Scenedesmus quadricauda의 광합성 특성 및 질소, 이 함량 변화)

  • Ahn, Chi-Yong;Kim, Hee-Sik;Yoon, Byung-Dae;Oh, Hee-Mock
    • ALGAE
    • /
    • v.17 no.2
    • /
    • pp.83-87
    • /
    • 2002
  • Photosynthetic parameters of Scendesmus quadricauda, such as the maximum photosynthetic rate ($P_{max}$), photosynthetic efficiency (α) and the initial saturation intensity of irradiance for photosynthesis ($I_K$) were obtained using photosynthesis-irradiance (P-I) curve in a phosphorus-limited chemostat. S. quadricauda exhibitied no photoinhibition until at 200 μmol·$m^{-2}$ . $P_{max}$ (r=0.963, P=0.002) and $I_K$(r=0.904, P=0.013) showed linear relationships with growth rate. Chlorophyll-α concentration and cell dry weight decreased at higher growth rates, ut chlorophyll-α content per cell dry weight increased. The increase in photosynthetic rates at higher growth rates was due to the increase of $P_{max}$ and $I_K$ which was caused mainly by the increase in the absolute amount of chlorophyll-α rather than the increased photosynthetic efficiency of individual chlorphyll-α. The α did not show a significant relationship with growth rate (r=0.714, P=0.111). The cell quota of carbon (r=0.554, P=0.254) was not correlated with growth rate, but cell quota of nitrogen (r=0.818, P=0.047) and phosphorus (r=0.855, P=0.030) exhibited linear correlations with growth rate.

The Changes of Growth Patterns and the Production of Brain-Derived Neurotrophic Factors (BDNFs) in Perfusion Cultivation of Human Neuroblastoma Cells

  • Hong, Jong-Soo;Lee, Joo-Nho;Kim, Sun-Hee;Park, Kyung-Yoo;Cho, Jin-Sang;Lee, Hyeon-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.3
    • /
    • pp.323-327
    • /
    • 1999
  • It was shown that brain-derived neurotrophic factors (BDNFs) secreted from human neuroblastoma cells can significantly improve the growth of the neurites of PC12 nerve cells. The addition of purified BDNFs elongated the neurites of PC 12 nerve cells two to three times more than the case where the addition was not made. The perfusion rate strongly affected the change of the size of human neuroblastoma cells because the cell size decreased as the perfusion rate increased. This could also influence the productivity of BDNF from the cells. It is also important to note that the BDNF production was decreased when the cell size was reduced. BDNF production rate also decreased at a fast perfusion rate in a smaller cell size. At the relatively fast perfusion rate of 18 ml/h, the ratio of apoptotic to necrotic cells dramatically decreased, which possibly caused the decrease of BDNF production. It has been proven that the secretion of BDNF from human neuroblastoma cells was a partially growth-related process by yielding 6.2$\times l0^{-8}/g$ of BDNF/cell/h of growth related parameter and $0.48{\times}l0^{-9}/g$ of BDNF/cell/h of nongrowth-related parameter in a growth kinetic model. In addition, it was also found that the perfusion rate played a very important role in controlling the cell death mechanism.

  • PDF

Effects of Nitrogen and Sodium on Growth in Phaeodactylum tricornutum (Bacillariophyceae)

  • Lee Soon Jeong;Choi Han Gil;Nam Ki Wan
    • Fisheries and Aquatic Sciences
    • /
    • v.3 no.2
    • /
    • pp.151-155
    • /
    • 2000
  • Phaeodactylum tricornutum (Bacillariophyceae) is a marine diatom which has been supplied as a food of bivalves. In this study, growth responses of P. tricornutum to some nitrogen sources and sodium were investigated by measuring cell number and contents of chlorophyll a in culture. In medium with nitrogen and sodium, brisk cell division occurred and maximum growth rate was respectively found in the medium with 150 mg/l of nitrate and 10 mg/l of ammonium and urea. At 10-500 mg/l ammonium and urea and 200-500 mg/l nitrate, specific growth rate decreased slightly. However, no cell division observed in sodium-deficient medium, regardless of presence or absence of nitrogen. This suggests that sodium is required for the nitrogen uptake of P. tricornutum, resulting nitrogen uptake leading to cell division. Also the upper limits of ammonium and nitrate for the growth of P. tricornutum seem to be 10 mg/l and 500 mg/l, respectively.

  • PDF

Effects of Initial Inoculum Size, Liquid Volume and Medium Feeding Strategy on Panax ginseng Hairy Roots Growth

  • Jeong, Gwi-Taek;Park, Don-Hui;Hwang, Baek
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.250-253
    • /
    • 2000
  • We researched effects of growth on initial inoculum size, liquid volume, and medium feeding rate etc. Cell suspension inoculated at low cell concentrations showed a typical growth reduction, whereas root cultures showed an improvement in growth. In this paper, Hairy roots showed high growth rate at 0.4 % inoculum size and 100 mL liquid volume in 250 mL flask cultures.

  • PDF

Batch Time Course Behaviors of Growth and Berberine Production in Plant cell suspension Cultures of Thalictrum rugosum. (Thalictrum rugosum 식물세포배양에 있어서 시간에 따른 세포성장 및 Berberine 생산의 변화)

  • 김동일
    • KSBB Journal
    • /
    • v.4 no.3
    • /
    • pp.271-275
    • /
    • 1989
  • Batch growth of plant cell suspension cultures of Thalictrum rugosum was studied to clarify the kinetic behaviors. It was found that the product formation was growth associated. The specific growth rate was $0.20-0.25\;day\;^{-1}$/TEX> at the growth phase and the FW/DCW ratio was an interesting parameter which represented the status of the cells or the status of sugar concentration. The cell yield was 0.36 g cells/g sugar. The maximum berberine level was 139 mg/L of which 120 mg/L was intracellular. In terms of the specific content of berberine, the product was 1.10% of dry cell weight. At the growth phase, the relationship between the specific growth rate and sugar concentration was described well by Monod kinetics.

  • PDF