DOI QR코드

DOI QR Code

Photosynthetic Characteristics and Cell Quota of Nitrogen and Phosphorus in Scenedesmus quadricauda under P Limitation

인제한에 따른 Scenedesmus quadricauda의 광합성 특성 및 질소, 이 함량 변화

  • Ahn, Chi-Yong (Biomolecular Process Engineering Laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Hee-Sik (Biomolecular Process Engineering Laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • Yoon, Byung-Dae (Biomolecular Process Engineering Laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • Oh, Hee-Mock (Biomolecular Process Engineering Laboratory, Korea Research Institute of Bioscience and Biotechnology)
  • 안치용 (한국생명공학연구원 생물공정연구실) ;
  • 김희식 (한국생명공학연구원 생물공정연구실) ;
  • 윤병대 (한국생명공학연구원 생물공정연구실) ;
  • 오희목 (한국생명공학연구원 생물공정연구실)
  • Published : 2002.06.30

Abstract

Photosynthetic parameters of Scendesmus quadricauda, such as the maximum photosynthetic rate ($P_{max}$), photosynthetic efficiency (α) and the initial saturation intensity of irradiance for photosynthesis ($I_K$) were obtained using photosynthesis-irradiance (P-I) curve in a phosphorus-limited chemostat. S. quadricauda exhibitied no photoinhibition until at 200 μmol·$m^{-2}$ . $P_{max}$ (r=0.963, P=0.002) and $I_K$(r=0.904, P=0.013) showed linear relationships with growth rate. Chlorophyll-α concentration and cell dry weight decreased at higher growth rates, ut chlorophyll-α content per cell dry weight increased. The increase in photosynthetic rates at higher growth rates was due to the increase of $P_{max}$ and $I_K$ which was caused mainly by the increase in the absolute amount of chlorophyll-α rather than the increased photosynthetic efficiency of individual chlorphyll-α. The α did not show a significant relationship with growth rate (r=0.714, P=0.111). The cell quota of carbon (r=0.554, P=0.254) was not correlated with growth rate, but cell quota of nitrogen (r=0.818, P=0.047) and phosphorus (r=0.855, P=0.030) exhibited linear correlations with growth rate.

Keywords

References

  1. 조경제, 신재기, 이진애, 문병용. 1995, 도시근교 하천 조만강의 식물플랑크통 일생산량 추정. 한국육수학회지 28: 101-110.
  2. 한명수, 이동석, 유재근, 박용철, 유광일. 1999, 팔당호의 생태학적 연구 3. 식물플랑크통의 일차생산력과 광합성 모델 parameters. 한국육수학회지 32: 8-15.
  3. Coles J.F. and Jones R.C 2000. Effect of temperature on photo-synthesis-light response and growth of four phytoplankton species isolated from a tidal freshwater river. J. Phycol. 36: 7-16.
  4. D' Elia C.F., Steudler P.A. and Corwin N. 1977. Determination of total nitrogen in aqueous samples using persulfate digestion. Limnol. Oceanogr. 22: 760-764. https://doi.org/10.4319/lo.1977.22.4.0760
  5. Fahnenstiel G.L., Chandler J.F., Carrick H.J. and Scavia D. 1989. Photosynthetic characteristics of phytoplankton communi-ties in Lakes Huron and Michigan:P-I parameters and end-products. J. Great Lakes Res.15: 394-407. https://doi.org/10.1016/S0380-1330(89)71495-7
  6. Guillard R.R.L. and Lorenzen C.J. 1972. Yellow-green algae with chlorophyllide c. J. Phycol. 8: 10-14.
  7. Kim B.-C and Kim D.-S. 1989. Primary productivity measure-ment by photosynthesis-irradiance model method in lake Soyang and the behavior of model paramenters. Kor. J. Limnol. 22: 167-177.
  8. Kirk J.T. 1994. Light and Photosynthesis in Aquatic Ecosystem. 2nd ed. Cambridge University Press, Cambridge.
  9. Menzel D.W. and Corwin N. 1965. The measurement of total phosphorus seawater based on the liberation of organi-cally bound fraction of persulfate oxidation. Limnol. Oceanogr. 10: 280-282. https://doi.org/10.4319/lo.1965.10.2.0280
  10. Murphy J. and Riley J. 1962. A midified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta. 27: 31-36. https://doi.org/10.1016/S0003-2670(00)88444-5
  11. Oh H.-M., Maeng J. and Rhee G-Y. 1991a. Effects of P limitation on carbon fixation in three freshwater algae. Kor. J. Phycol. 6: 83-89.
  12. Oh H.-M., Maeng J. and Rhee G-Y. 1991b. Nitogen and carbon fixation by Anabaena sp. isolated from a rice paddy and grown under P and light limitations. J. Appl. Phycol. 3: 335-343. https://doi.org/10.1007/BF02392887
  13. Payri C.E., Maritorena S., Bizeau C. and Rodiere M. 2001. Photoacclimation in the tropical corallone alga Hydrolothon onkodes (Rhodophyta, Corallonaceae) from a French Polynesian reef. J. Phycol. 37: 223-234.
  14. Platt T., Gallegos C.L. and Harrison W.G. 1980. Phtoinhibition of photosynthesis in natural assemblages of marine phyto-plankton. J. Mar. Res.38: 687-702.
  15. Rhee G-Y. 1982. Effects of environmental factors and their inter-action on phytoplankton growth. Adv. Microb. Ecol. 6: 33-74. https://doi.org/10.1007/978-1-4615-8318-9_2
  16. Richardson K.J., Beardall J. and Raven J.A. 1983. Adaptation of unicellular algae to irradiance :an analysis of strategies. New Phytol. 93: 157-191. https://doi.org/10.1111/j.1469-8137.1983.tb03422.x
  17. Tuji A. 2000. The effect of irradiance on the growth of different forms of freshwater diatoms : implications for succession in attached diatom communities. J. Phycol. 36: 659-661. https://doi.org/10.1046/j.1529-8817.2000.99212.x
  18. Webb W.L., Newton M. and Starr D. 1974. Carbon dioxide exchange of Alnus rubra : A mathematical model. Oecologia 17: 281-291. https://doi.org/10.1007/BF00345747
  19. Welschmeyer N.A. and Lorenzen C.J. 1981. Chlorophyll-specific photosynthesis and quantum efficiency at subsaturating light intensites. J. Phycol. 17: 283-293. https://doi.org/10.1111/j.0022-3646.1981.00283.x
  20. Wetzel R.G. and Likens G.E. 1991. Limnological Analyses. 2nd ed. Springer-Verlag, New York.
  21. Wood L.W. 1985. Chloroform-methanol extraction of chlorophyll-a. Can. J. Fish. Aquat. Sci.42: 38-43. https://doi.org/10.1139/f85-005
  22. Wynne D. and Rhee G-Y. 1986. Effects of light intensity and quality on the relative N and P requirement (the optimum N:P ratio) of marine planktonic algae. J. Plankton Res. 8: 91-103. https://doi.org/10.1093/plankt/8.1.91