• Title/Summary/Keyword: cell factory

Search Result 105, Processing Time 0.027 seconds

자동화 시스템내 셀 콘트롤러의 통신소프트웨어 개발 및 실험

  • 정병수;도성희;박경진;강무진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.243-248
    • /
    • 1992
  • Computer Integrated Manufacturing(CIM) is a growing technology as a solution for the total automation of a manufacturing system. However, the implementation in the shop floor is extremely difficult due to many reasons. Flexible Manufacturing System (FMS) is usually considered as a solution for the shop floor automation. One of the difficulties in FMS is the communications problem. Since various machinaries with different communications protocols are included, applying a unified scheme is almost impossible. Therefore, a systematic approach is a key point to solve the communication problem. A cell is defined as an automation unit where closely related for a job reside together. A cell is a messenger between upper level computers and lower level machine equipment. In this research, the functions of the cell are defined to have more capabilities than conventional cell since a cell can be often a total manufacturing system in a small to medium sized factory. The cell conducts communications with different machines through the communications schemes established here. A set of software system has been developed according to the defined communications. The software has been tested for a simulation and real experiments for proof.

Performance Analysis of Transport Time and Legal Stability through Smart OTP Access System for SMEs in Connected Industrial Parks

  • Kim, Ilgoun;Jeong, Jongpil
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.224-241
    • /
    • 2021
  • According to data from the National Police Agency, 75.5 percent of dead traffic accidents in Korea are truck accidents. About 1,000 people die in cargo truck accidents in Korea every year, and two to three people die in cargo truck accidents every day. In the survey, Korean cargo workers answer poor working conditions as an important cause of constant truck accidents. COVID 19 is increasing demand for non-face-to-face logistics. The inefficiency of the Korean transportation system is leading to excessive work burden for small logistics The inefficiency of the Korean transportation system is causing excessive work burden for small individual carriers. The inefficiency of the Korean transportation system is also evidenced by the number of deaths from logistics industry disasters that have risen sharply since 2020. Small and medium-sized Korean Enterprises located in CIPs (Connected Industrial Parks) often do not have smart access certification systems. And as a result, a lot of transportation time is wasted at the final destination stage. In the logistics industry, time is the cost and time is the revenue. The logistics industry is the representative industry in which time becomes money. The smart access authentication system architecture proposed in this paper allows small logistics private carriers to improve legal stability, and SMEs (Small and Medium-sized Enterprises) in CIPs to reduce logistics transit time. The CIPs smart access system proposed in this paper utilizes the currently active Mobile OTP (One Time Password), which can significantly reduce system design costs, significantly reduce the data capacity burden on individual cell phone terminals, and improve the response speed of individual cell phone terminals. It is also compatible with the OTP system, which was previously used in various ways, and the system reliability through the long period of use of the OTP system is also high. User customers can understand OTP access systems more easily than other smart access systems.

Cure Kinetics of Cycloaliphatic Epoxy/Silica System for Electrical Insulation Materials in Outdoor Applications

  • Lee, Jae-Young;Park, Jae-Jun;Kim, Jae-Seol;Shin, Seong-Sik;Yoon, Chan-Young;Cheong, Jong-Hoon;Kim, Young-Woo;Kang, Geun-Bae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.2
    • /
    • pp.74-77
    • /
    • 2015
  • The cure kinetics of a neat epoxy system and epoxy/silica composite were investigated by DSC analysis. A cycloaliphatic type epoxy resin was diglycidyl 1,2-cyclohexanedicarboxylate and curing agent was anhydride type. To estimate kinetic parameters, the Kissinger equation was used. The activation energy of the neat epoxy system was 88.9 kJ/mol and pre-exponential factor was 2.64×1012 min−1, while the activation energy and pre-exponential factor for epoxy/silica composite were 97.4 kJ/mol and 9.21×1012 min−1, respectively. These values showed that the silica particles have effects on the cure kinetics of the neat epoxy matrix.

Mechanical and Electrical Properties of Cycloaliphatic Epoxy/Silica Systems for Electrical Insulators for Outdoor Applications

  • Park, Jae-Jun;Kim, Jae-Seol;Yoon, Chan-Young;Shin, Seong-Sik;Lee, Jae-Young;Cheong, Jong-Hoon;Kim, Young-Woo;Kang, Geun-Bae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.2
    • /
    • pp.82-85
    • /
    • 2015
  • Mechanical and electrical properties of epoxy/silica microcomposites were investigated. The cycloaliphatic- type epoxy resin was diglycidyl 1,2-cyclohexanedicarboxylate and the curing agent was of an anhydride type. To measure the glass transition temperature (Tg), dynamic differential scanning calorimetry (DSC) analysis was carried out, and tensile and flexural tests were performed using a universal testing machine (UTM). Electrical breakdown strength, the most important property for electrical insulation materials, and insulation breakdown strength were also tested. The microcomposite with 60 wt% microsilica showed maximum values in mechanical and electrical properties.

Shikimate Metabolic Pathway Engineering in Corynebacterium glutamicum

  • Park, Eunhwi;Kim, Hye-Jin;Seo, Seung-Yeul;Lee, Han-Na;Choi, Si-Sun;Lee, Sang Joung;Kim, Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.9
    • /
    • pp.1305-1310
    • /
    • 2021
  • Shikimate is a key high-demand metabolite for synthesizing valuable antiviral drugs, such as the anti-influenza drug, oseltamivir (Tamiflu). Microbial-based strategies for shikimate production have been developed to overcome the unstable and expensive supply of shikimate derived from traditional plant extraction processes. In this study, a microbial cell factory using Corynebacterium glutamicum was designed to overproduce shikimate in a fed-batch culture system. First, the shikimate kinase gene (aroK) responsible for converting shikimate to the next step was disrupted to facilitate the accumulation of shikimate. Several genes encoding the shikimate bypass route, such as dehydroshikimate dehydratase (QsuB), pyruvate kinase (Pyk1), and quinate/shikimate dehydrogenase (QsuD), were disrupted sequentially. An artificial operon containing several shikimate pathway genes, including aroE, aroB, aroF, and aroG were overexpressed to maximize the glucose uptake and intermediate flux. The rationally designed shikimate-overproducing C. glutamicum strain grown in an optimized medium produced approximately 37.3 g/l of shikimate in 7-L fed-batch fermentation. Overall, rational cell factory design and culture process optimization for the microbial-based production of shikimate will play a key role in complementing traditional plant-derived shikimate production processes.

Effect of Silicone-modified Microsilica Content on Electrical and Mechanical Properties of Cycloaliphatic Epoxy/Microsilica System

  • Park, Jae-Jun;Yoon, Chan-Young;Lee, Jae-Young;Cheong, Jong-Hoon;Kang, Geun-Bae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.3
    • /
    • pp.155-158
    • /
    • 2016
  • The effect of microsilica content modified with silicone-modified epoxy on electrical and mechanical properties of cycloaliphatic epoxy/microsilica system was investigated. The cycloaliphatic epoxy resin was diglycidyl 1,2-cyclohexanedicarboxylate and curing agent was an anhydride. Surface of microsilica was modified with silicone-modified epoxy. Electrical breakdown strength, the most important property for electrical insulation materials was tested. Tensile and flexural tests were also performed using universal testing machine (UTM). The microcomposite with 60 wt% microsilica shows maximum values in electrical breakdown strength.

Kinetics for Citric Acid Production from the Concentrated Milk Factory Waste Water by Aspergillus niger ATCC 9142 (Aspergillus niger ATCC 9142 세포에 의해 농축된 우유공장폐수로부터 구연산생산에 대한 동력학 연구)

  • Lee Yong-Hee;Suh Myung-Gyo;Chung Kyung-Tae
    • Journal of Life Science
    • /
    • v.16 no.1
    • /
    • pp.6-11
    • /
    • 2006
  • The waste water from a milk factory was investigated for possibility of use to the production of citric acid by cells of Aspegillus niger ATCC 9142. The addition of $Mn^{2+},\;Fe^{2+}\;and\;Cu^{2+}$ ions to waste increased citric acid production steadily, but addition of metal ion $Mg^{2+}$ decreased the citric acid production. The amount of produced citric acid by Aspegillus niger ATCC 9142 with addition 50 g/1 and 100 g/1 of reducing sugar in milk factory waste water were 7.2 g/1 and 16.5 g/1 respectively. Mathematical model was simulated for their predictability of cell growth, citric acid production and substrate consumption rate and coincided with experimental data.

Optimal Condition for Citric Acid Production from Milk Factory Waste Water by Using the Immobilized Cells of Aspergillus niger (고정화 Aspergillus niger 세포를 이용한 우유공장 폐수로부터 구연산 생산의 최적 조건)

  • 이용희;서명교;노호석;이동환;정경태;정영기
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.2
    • /
    • pp.154-157
    • /
    • 2004
  • Immobilized cells of Aspergillus niger was employed to produce citric acid by fermentation of milk factory waste water. A. niger ATCC 9142 as a citric acid production strain was cultured for 3 days and was entrapped with Ca-alginate bead about 2.5∼3.5 mm. The optimal pH and temperature were estimated to be 3.0 and $30^{\circ}C$, respectively. Dilution rate for fermentation was calculated to be $0.025 h^{-1}$ . Maximum amount of citric acid was obtained at 4.5 g/$\ell$ with the optimized fermentation condition. The yield of citric acid produced by immobilized A. niger ATCC 9143 was 70.3%. The yield was increased by 20% with immobilized cell, compared to that of the shake flask culture. Hence, the milk factory waste water is worthy to be used for the substrate of citric acid fermentation.

Design of an Intelligent Robot Control System Using Neural Network (신경회로망을 이용한 지능형 로봇 제어 시스템 설계)

  • 정동연
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.182-187
    • /
    • 2000
  • In this paper, we have proposed a new approach to the design of robot vision system to develop the technology for the automatic test and assembling of precision mechanical and electronic parts for the factory automation. In order to perform real time implementation of the automatic assembling tasks in the complex processes, we have developed an intelligent control algorithm based-on neural networks control theory to enhance the precise motion control. Implementing of the automatic test tasks has been performed by the real-time vision algorithm based-on TMS320C31 DSPs. It distinguishes correctly the difference between the acceptable and unacceptable defective item through pattern recognition of parts by the developed vision algorithm. Finally, the performance of proposed robot vision system has been illustrated by experiment for the similar model of fifth cell among the twelve cell for similar model of fifth cell among the twelve cell for automatic test and assemblig in S company.

  • PDF

Isolation and Characterization of the Indigenous Microalgae Chlamydomonas reinhardtii K01 as a Potential Resource for Lipid Production and Genetic Modification (지질생산 및 유전자 조작의 잠재적 자원으로서의 토착 미세조류 Chlamydomonas reinhardtii K01의 분리 및 특성)

  • Kim, Eun-Kyung;Cho, Dae Hyun;Suh, Sang-Ik;Lee, Chang-Jun;Kim, Hee-Sik;Suh, Hyun-Hyo
    • Journal of Life Science
    • /
    • v.32 no.3
    • /
    • pp.202-209
    • /
    • 2022
  • The green alga Chlamydomonas reinhardtii, a unicellular haploid eukaryote, has long been used by researchers and industries as a cell factory to produce high value-added microalgae substances using genetic modification. Microalga K01, presumed to be Chlamydomonas, was isolated from 12 freshwater samples from the Chungcheong and Jeolla regions to replace C. reinhardtii, an introduced species currently used in most basic and industrial research. The isolated K01 strain was identified as C. reinhardtii through morphological and phylogenetic studies of the 18S rDNA gene sequence (NCBI accession number KC166137). The growth and lipid content of the isolated C. reinhardtii K01 were compared with three wild and four mutant strains in TAP medium, and it was found that the K01 strain could produce 1.74×107 cells/ml by the third day of culture. The growth rate of C. reinhardtii K01 was 1.5 times faster than UTEX2244, which showed the highest number of cells (1.20×107 cells/ml) among the compared strains. The lipid content of the isolated C. reinhardtii K01 (20.67%) was similar to those of the wild strains, although the fatty acid oleate C18:1 was not detected in the isolated strain but was identified in the seven others. The cell density of the isolated strain increased to 0.87 g/l during a six-day culture in BG11 medium, where nitrate (NaNO3) was introduced as a nitrogen source, while the seven acquired strains showed almost no cell proliferation.