• Title/Summary/Keyword: cell degradation

Search Result 1,525, Processing Time 0.036 seconds

Frequency Reuse and Sub-cell Coverage Determination Scheme for Improved Throughput in OFDMA-based Relay Systems (OFDMA 기반 Relay 시스템에서 Throughput 개선을 위한 자원 재사용과 커버리지 설정기법)

  • Hyun, Myung-Reun;Choi, Ho-Young;Hong, Dae-Hyoung;Lim, Jae-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5A
    • /
    • pp.414-420
    • /
    • 2009
  • In this paper, we investigate throughput performance of OFDMA-based relay systems according to the "sub-cell coverage configuration" of the base station (RS) and the relay station (RS). RS is exploited for improved quality of the received signal with a tradeoff of additional radio resource consumption which may result in degradation of the throughput performance of the system. Therefore, "radio resource reuse" may be necessary for high performance in relay systems. However, it also causes system performance degradation since resource reuse between RSs incurs channel interference. Therefore, effective resource reuse also should be considered for "high throughput coverage configuration" when relays are employed. We relate the resource reuse patterns of neighboring RSs to sub-cell coverage configuration. We determine the sub-cell coverage of the system depending on the ratio of received signal-interference-noise-ratio (SINR) of the mobile station (MS) from the BS and RS, respectively. Simulations illustrate the throughput performance as the function of SINR ratio, and it has different optimal point depending on the resource reuse patterns. Therefore, the "resource reuse pattern" and the "effective sub-cell coverage configuration" should be considered together for the high throughput performance of the relay system.

Identification of Sugar-Responsive Genes and Discovery of the New Functions in Plant Cell Wall

  • Lee, Eun-Jeong
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2007.04a
    • /
    • pp.65-73
    • /
    • 2007
  • The objective of this study is to understand how regulatory mechanisms respond to sugar status for more efficient carbon utilization and source-sink regulation in plants. So, we need to identify and characterize many components of sugar-response pathways for a better understanding of sugar responses. For this end, genes responding change of sugar status were screened using Arabidpsis cDNA arrays, and confirmed thirty-six genes to be regulated by sucrose supply in detached leaves by RNA blot analysis. Eleven of them encoding proteins for amino acid metabolism and carbohydrate metabolism were repressed by sugars. The remaining genes induced by sugar supply were for protein synthesis including ribosomal proteins and elongation factors. Among them, I focused on three hydrolase genes encoding putative $\beta$-galactosidase, $\beta$-xylosidase, and $\beta$-glucosidase that were transcriptionally induced in sugar starvation. Homology search indicated that these enzymes were involved in hydrolysis of cell wall polysaccharides. In addition to my results, recent transcriptome analysis suggested multiple genes for cell wall degradation were induced by sugar starvation. Thus, I hypothesized that enzyme for cell wall degradation were synthesized and secreted to hydrolyze cell wall polysaccharides producing carbon source under sugar-starved conditions. In fact, the enzymatic activities of these three enzymes increased in culture medium of Arabidopsis suspension cells under sugar starvation. The $\beta$-galactosidase encoded by At5g56870 was identified as a secretory protein in culture medium of suspension cells by mass spectrometry analysis. This protein was specifically detected under sugar-starved condition with a specific antibody. Induction of these genes was repressed in suspension cells grown with galactose, xylose and glucose as well as with sucrose. In planta, expression of the genes and protein accumulation were detected when photosynthesis was inhibited. Glycosyl hydrolase activity against galactan also increased during sugar starvation. Further, contents of cell wall polysaccharides especially pectin and hemicellulose were markedly decreased associating with sugar starvation in detached leaves. The amount of monosaccharide in pectin and hemicellulose in detached leaves decreased in response to sugar starvation. These results supported my idea that cell wall has one of function to supply carbon source in addition to determination of cell shape and physical support of plant bodies.

  • PDF

Influence of Metallic Contamination on Photovoltaic Characteristics of n-type Silicon Solar-cells (중금속 오염이 n형 실리콘 태양전지의 전기적 특성에 미치는 영향에 대한 연구)

  • Kim, Il-Hwan;Park, Jun-Seong;Park, Jea-Gun
    • Current Photovoltaic Research
    • /
    • v.6 no.1
    • /
    • pp.17-20
    • /
    • 2018
  • The dependency of the photovoltaic performance of p-/n-type silicon solar-cells on the metallic contaminant type (Fe, Cu, and Ni) and concentration was investigated. The minority-carrier recombination lifetime was degraded with increasing metallic contaminant concentration, however, the degradation sensitivity of recombination lifetime was lower at n-type than p-type silicon wafer, which means n-type silicon wafer have an immunity to the effect of metallic contamination. This is because heavy metal ions with positive charge have a much larger capture cross section of electron than hole, so that reaction with electrons occurs much more easily. The power conversion efficiency of n-type solar-cells was degraded by 9.73% when metallic impurities were introduced in the silicon bulk, which is lower degradation compared to p-type solar-cells (15.61% of efficiency degradation). Therefore, n-type silicon solar-cells have a potential to achieve high efficiency of the solar-cell in the future with a merit of immunity against metal contamination.

Catabolic Pathway of Lignin Derived-Aromatic Compounds by Whole Cell of Phanerochaete chrysosporium (ATCC 20696) With Reducing Agent

  • Hong, Chang-Young;Kim, Seon-Hong;Park, Se-Yeong;Choi, June-Ho;Cho, Seong-Min;Kim, Myungkil;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.168-181
    • /
    • 2017
  • Whole cell of Phanerochaete chrysosporium with reducing agent was applied to verify the degradation mechanism of aromatic compounds derived from lignin precisely. Unlike the free-reducing agent experiment, various degraded products of aromatic compounds were detected under the fungal treatment. Our results suggested that demethoxylation, $C_{\alpha}$ oxidation and ring cleavage of aromatic compounds occurred under the catabolic system of P. chrysosporium. After that, degraded products stimulated the primary metabolism of fungus, so succinic acid was ultimately main degradation product of lignin derived-aromatic compounds. Especially, hydroquinone was detected as final intermediate in the degradation of aromatics and production of succinic acid. In conclusions, P. chrysosporium has an unique catabolic metabolism related to the production of succinic acid from lignin derived-aromatic compounds, which was meaningful in terms of lignin valorization.

Ultrastructural Studies on the Autolysis of Coprinellus congregatus (먹물버섯의 자가분해 과정에 대한 미세구조 연구)

  • Choi Hyung-Tae;Cho Chung-Won
    • Korean Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.312-315
    • /
    • 2005
  • Coprinellus congregatus, known as an inky cap, is autolysed into ink soon after the maturation of the mushrooms. Electron microscopy was used to examine the ultrastructural changes associated with the autolysis as an initial step to understand the role of hydrolytic enzymes in this process. During the early stages of maturation of the mushrooms, most of cytoplasm of hymenial and subhymenial tissues seemed to be transported to the developing basidiospores. The depletion of cytoplasm within the tissues and the maturation of the basidiospores may initiate the degradation of the cell walls of the tissues. Both hymenial and subhymenial tissues seemed to degraded at the same time. This study suggested that the critical steps in the autolysis of mushrooms is not the degradation of the cytoplasm, but the degradation of the cell wall by hydrolytic enzymes such as chitinases.

Hybrid marine propulsion power system with the redox flow batteries of comprehensive aging model

  • Yoo, Seunghyeon;Aguerrevere, Jorge;Jeong, Jinyeong;Jung, Wongwan;Chang, Daejun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.674-690
    • /
    • 2021
  • This study proposes a hybrid marine power system combining dual-fuel generators, a fuel cell, and Vanadium Redox Flow Batteries (VRFB). Rigorous verification and validation of the dynamic modelling and integration of the system are conducted. A case study for the application of the hybrid propulsion system to a passenger ship is conducted to examine its time-variant behaviour. A comprehensive model of the reversible and irreversible capacity degradation of the VRFB stack unit is proposed and validated. The capacity retention of the VRFB stack is simulated by being integrated within the hybrid propulsion system. Reversible degradation of the VRFB stack is precisely predicted and rehabilitated based on the predefined operational schedule, while the irreversible portion is retained until the affected components are replaced. Consequently, the advantages of the VRFB system as an on-board ESS are demonstrated through the application of a hybrid propulsion system for liner shipping with fixed routes.

A Low Vth SRAM Reducing Mismatch of Cell-Stability with an Elevated Cell Biasing Scheme

  • Yamauchi, Hiroyuki
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.2
    • /
    • pp.118-129
    • /
    • 2010
  • A lower-threshold-voltage (LVth) SRAM cell with an elevated cell biasing scheme, which enables to reduce the random threshold-voltage (Vth) variation and to alleviate the stability-degradation caused by word-line (WL) and cell power line (VDDM) disturbed accesses in row and column directions, has been proposed. The random Vth variation (${\sigma}Vth$) is suppressed by the proposed LVth cell. As a result, the LVth cell reduces the variation of static noise margin (SNM) for the data retention, which enables to maintain a higher SNM over a larger memory size, compared with a conventionally being used higher Vth (HVth) cell. An elevated cell biasing scheme cancels the substantial trade-off relationship between SNM and the write margin (WRTM) in an SRAM cell. Obtained simulation results with a 45-nm CMOS technology model demonstrate that the proposed techniques allow sufficient stability margins to be maintained up to $6{\sigma}$ level with a 0.5-V data retention voltage and a 0.7-V logic bias voltage.

Degradation of BTEX and Trichloroethylene by Pseudomonas putida F1 and Burkholderia cepacia G4 (Pseudomonas putida F1과 Burkholderia cepacia G4에 의한 BTEX, trichloroethylene 분해)

  • 이승우;이준명;장덕진
    • KSBB Journal
    • /
    • v.13 no.5
    • /
    • pp.561-568
    • /
    • 1998
  • Two cometabolic trichloroethylene (TC) degraders, Pseudomonas putida F1 and Burkholderia (Pseudomonas) cepacia G4, were found to catabolize phenol, benzene, toluene, and ethylbenzene as carbon and energy sources. Resting cells of P. putida F1 and B. cepacia G4 grown in the presence of toluene and phenol, respectively, were able to degrade not only benzene, toluene and ethylenzene but also TCE and p-xylene. However, these two strains grown in the absence of toluene or phenol did not degrade TCE and p-xylene. Therefore, it was tentatively concluded that cometabolic degradation of TC and p-xylene was mediated by toluene dioxygenase (P. putida F1) or toluene-2-monooxygenase (B. cepacia G4). Maximal degradation rates of BTEX and TCE by toluene- and phenol-induced resting cells of P. putida F1 and B. cepacia G4 were appeared to be 4-530 nmol/(min$.$mg cell protein) when a single compound was solely served as a target substrate. In case of double substrates, the benzene degradation rate by P. putida F1 in the presence of toluene was decreased up to one seventh of that for the single substrate. TCE degradation rate was also linearly decreased as toluene concentration increased. On the other hand, toluene degradation rate was enhanced by benzene and TCE. For B. cepacia G4, degradation rates of TCE and toluene increased 4 times in the presence of 50 ${\mu}$M phenol. From these results, it was concluded that a degradation rate of a compound in the presence of another cosubstrate(s) could not be predicted by simply generalizing antagonistic or synergistic interactions between substrates.

  • PDF

Conversion of Plant Sterols to Androsta-4-ene-3,17-dione by a mutant of Mycobacterium sp. NRRL B-3805 (Mycobacterium종 (NRRL B-3805)의 변이종에 의한 식물스테롤의 androsta-4-ene-3,17-dione(AD)으로의 전환)

  • 이강업
    • Korean Journal of Microbiology
    • /
    • v.28 no.4
    • /
    • pp.351-363
    • /
    • 1990
  • A mutant was selected by NTG treatment of Mycobacterium sp. NRRL B-3805, which was capable of degrading plant sterol to androsta-4-ene-3, 17-dione and yields was higher than NRRL B-3805. Also this mutant produced androst-4-ene-3, 17-dione faster than NRRL B-3805. It described the mode of sitosteroidal degradation, and the interrelation between cell membrane and its attachment to substrate during the sterol degradation process by this mutant and it was compared with Mvcobacterium sp. NRRL B-3805.

  • PDF

PID Recovery Characteristics of Photovoltaic Modules in Various Environmental Conditions (다양한 환경조건에서 태양전지모듈의 PID회복특성)

  • Lee, Eun-Suk;Jung, Tea-Hee;Go, Seok-Hwan;Ju, Young-Chul;Chang, Hyo Sik;Kang, Gi-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.5
    • /
    • pp.57-65
    • /
    • 2015
  • The Potential Induced Degradation(PID) in PV module mainly affected by various performance conditions such as a potential difference between solar cell and frame, ambient temperature and relative humidity. The positive charges as sodium ions in front glass reach solar cell in module by a potential difference and are accumulated in the solar cell. The ions accelerate the recombination of generation electrons within solar cell under illumination, which reduces the entire output of module. Recently, it was generally known that PID generation is suppressed by controlling the thickness of SiNx AR coating layer on solar cell or using Sodium-free glass and high resistivity encapsulant. However, recovery effects for module with PID are required, because those methods permanently prevent generating PID of module. PID recovery method that voltage reversely applies between solar cell and frame contract to PID generation begins to receive attention. In this paper, PID recovery tests by using voltage under various outdoor conditions as humidity, temperature, voltage are conducted to effectively mitigate PID in module. We confirm that this recovery method perfectly eliminates PID of solar cell according to repeative PID generation and recovery as well as the applied voltage of three factors mainly affect PID recovery.