• Title/Summary/Keyword: cell characteristics

Search Result 6,496, Processing Time 0.032 seconds

Characteristics of the Stress Reduction and Output Voltage of ST(Switched Trans) Quasi Z-Source Inverter (ST Quasi Z-소스 인버터의 스트레스 저감과 출력전압 특성)

  • Kim, Se-Jin;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • This paper proposes a ST(Switched Trans) quasi Z-source inverter using a Switched Trans Cell combing the characteristics of a Switched Inductor Cell and Trans. A DC link inductor of the conventional quasi Z-source inverter is alternated with Switched Trans Cell of the proposed ST quasi Z-source inverter. Trans Cell of the proposed method consists of one Trans and two diodes, and the proposed method has higher and more various boost function than the conventional quasi Z-source inverter by simply changing the turns ratio of primary and secondary of the Trans. The validity of the proposed ST Z-source inverter was confirmed by PSIM simulation and a DSP based experiment under the input voltage 48V and output phase voltage 30V. As a result, when compared with the traditional quasi Z-source inverter, the proposed method has the advantage of the low voltage stress under the same output voltage condition of the voltage.

The Characteristic Analysis of the Dye-sensitized Solar Cells as the Change of Incident Angle (광 입사각에 따른 염료감응형 태양전지의 발전특성 분석)

  • Seo, Hyun-Woong;Son, Min-Kyu;Lee, Kyoung-Jun;Jang, Jin-Ju;Hong, Ji-Tae;Kim, Hee-Je
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.124-127
    • /
    • 2008
  • Dye-sensitized solar cells (DSCs) have been proposed as a substitute for overcoming the limitation of Si solar cells because DSC has the various applications using advantages of DSC such as low cost, transparency and flexibility. Although some people point out low efficiency of DSC as the important problem at present, general views say that actually cumulative power is not insufficient as compared with Si solar cell. Therefore, we analyzed the characteristics of both cells according to the change of incident angle in this study. The insensibility about the incident angle has more developable time. Finally, DSC is able to fill a shortage of power caused from low efficiency of DSC for same time by developing during impossible time to develop in Si solar cell. As a result, DSC has 75% and 210% cumulative power of Si solar cell in summer and winter under the standard sunshine duration.

  • PDF

Protective Effect of NACA on Periodontal Stem Cell (NACA 처리에 따른 치주줄기세포 사멸 억제 효과)

  • Lee, Kyunghee
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.3
    • /
    • pp.53-62
    • /
    • 2020
  • Purpose :Periodontal ligament stem cells maintain tissue homeostasis in periodontal ligament. The purpose of this study was to determine the characteristics of periodontal ligament stem cells isolated from premolar teeth and observe protective effects against oxidative damage caused by Triethylene glycol dimethacrylate (TEGDMA) following treatment with N-acetylsysteine amide (NACA) drug known as enzymatic antioxidants. Methods : Primary periodontal ligament stem cell (PDSC) culture was performed from simply extracted human premolar of orthodontic patients. The characteristics of the primary cultured PDSCs was analyzed using the FACS system. PDSCs was incubated with TEGDMA and NACA. The cell proliferation and survival was determined using WST-1 assay. Collected data were analyzed using SPSS Window 20. Results : Primary cultured PDSCs grow on the floor and develop rapidly in a cluster form from up to 14 days. The morphology of PDSCs showed the spindle-shaped cells and grew directionally. FACS analysis, In addition, positive expression of visible cells were observed in mesenchymal stem cell biomarkers. PDLSCs cell viability was significantly decreased at high concentration in both 3 and 6 hours after TEGDMA treatment. We observed a decrease in the number of cells as well as a morphological change of PDLSCs. Antioxidative effect was notable since the death of PDLSC death was significantly inhibited compared to the control group at 24 and 48 hours after NACA treatment. Conclusion : Therefore, based on the results of this study, further research should be encouraged considering the development of clinical treatment methods using various antioxidants as well as regenerative engineering techniques utilizing periodontal ligament stem cells.

Fuel Cell Modeling with Output Characteristics of Boost Converter (연료전지 모델링 및 부스트 컨버터 출력 특성)

  • Park, Bong-Hee;Choi, Ju-Yeop;Choy, Ick;Lee, Sang-Cheol;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.91-97
    • /
    • 2014
  • This paper proposes a modeling of fuel cell which replaces dc source during simulation. Fuel cells are electrochemical devices that convert chemical energy in fuels into electrical energy. This system has high efficiency and heat, no environmental chemical pollutions and noise. Proton exchange membrane fuel cells (PEMFC) are commonly used as a residential generator. These fuel cells have different electrical characteristics such as a low voltage and high current compared with solar cells. And there are different behaviors in the V-I curve in the temperature and pressure. Therefore, the modeling of fuel cell should consider wide voltage range and slow current response and the resulting electrical model is applied to boost converter with fuel cell as an input source.

Physiological Characteristics of Immobilized Streptomyces Cells in Continuous Cultures at Different Dilution Rates

  • Kim, Chang-Joon;Chang, Yong-Keun;Chun, Gie-Taek;Jeong, Yeon-Ho;Lee, Sang-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.557-562
    • /
    • 2002
  • Physiological characteristics such as specific productivity, morphology of Streptomyces cells Immobilized on celite beads, and operational stability at different dilution rates were investigated in continuous immobilized-cell cultures for the production of kasugamycin. At a dilution rate (D) of 0.05 $h^{-1}$, a relatively high specific productivity was attained and the loss of cell-loaded beads was negligible. At D=0.1 $h^{-1}$, a higher specific productivity and cell concentration could be obtained, resulting in a significantly improved volumetric kasugamycin productivity. However, no stable operation could be maintained due to a significant loss of cell-loaded beads from the reactor that was caused by their fluffy morphology developed in the later stage. At D=0.2 $h^{-1}$, the production of kasugamycin and cell growth were observed to be severely inhibited by the high concentration of residual maltose.

Electro-Optic Characteristics of the Fringe-Field driven Reflective Hybrid Aligned Nematic Liquid Crystal Display (Fringe-Field 구동형 반사형 Hybrid Aligned Nematic 액정 디스플레이의 전기-광학 특성)

  • 정태봉;박지혁;손정석;송제훈;이승희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.2
    • /
    • pp.201-206
    • /
    • 2004
  • We have performed computer simulation and experiment to obtain electro-optic characteristics of reflective hybrid aligned nematic (R-HAN) cell driven by fringe field, in which the cell consists of polarizer, optical compensation film, LC layer and reflector. Conventional R-HAN cell driven by fringe field using only the LC layer shows high wavelength dispersion at dark-state and thus viewing angle characteristic is strongly wavelength-dependent. In order to improve this demerit, we added one optical compensation film to conventional R-HAN cell. The display with optimized cell parameters shows low wavelength dispersion at dark-state and exhibits a wide viewing angle without the occurrence of grey scale inversion over a wide range of viewing angles and the contrast ratio greater than 5 over exists about 120$^{\circ}$ in vortical direction and 160$^{\circ}$in horizontal direction. Experimental results show good agreements with theoretical results and fast response time.

Full-bridge Soft-Switching PS-PWM DC-DC Converter for Fuel Cell Generation System (연료전지 시스템을 위한 풀-브리지 소프트 위상 천이 PWM DC-DC 컨버터)

  • Mun, S.P.;Suh, K.Y.;Lee, H.W.;Nakaoko, M.;Shin, H.B.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.371-376
    • /
    • 2005
  • In this paper, a new a new full-bridge soft-switching phase shift PWM DC-DC Converter has been proposed, which is suitable for fuel cell based power generation system. The proposed converter has outstanding advantage over the conventional DC-DC converter with respect to high efficiency, high power density, and hish component utilization. In special. the proposed converter has predominant high boosting output voltage and high efficiency characteristics under the inherently severs low output voltage of the fuel cell through the overall load conditions. Moreover, the developed converter has been experimentally tested with the help of a fuel cell simulator, and can generate the V-I characteristics of proton exchange membrane(PEM) fuel cell, so that the performance of the proposed converter could be effectively examined and the validity of the converter could be verified.

  • PDF

EO performance of IPS cell on the inorganic films surface using DuoPIGatron ion source (유기박막표면에 DuoPIGatron 이온소스를 이용한 IPS 셀의 전기광학 특성)

  • Kim, Byoung-Yong;Hwang, Jeoung-Yeon;Kim, Sang-Hun;Han, Jung-Min;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.04a
    • /
    • pp.89-90
    • /
    • 2006
  • Electro-optical (EO) characteristics of in-plane switching (IPS) cell on the polyimide surface using obliquely ion beam (IB) exposure as new ion beam (IB) type system (DuoPIGatrion ion source). A good uniform alignment of the nematic liquid crystal (NLC) alignment with the ion beam exposure on the polyimide surface was observed. In addition, it can be achieved the good EO properties of the ion-beam-aligned IPS-cell on poly imide surface ; the stable VT curve in the ion-beam-aligned IPS cell on a poly imide (PI) surface with ion beam exposure using new type IB equipment was obtained. and the fast response time in the ion-beam-aligned IPS cell on a polyimide (PI) surface with ion beam exposure using new type IB equipment was obtained.

  • PDF

Study on the Air Foil Bearings of the Turbo-Expander for Fuel Cell System (연료 전지용 터보 익스펜더의 공기 포일 베어링에 대한 연구)

  • Lee Yong-Bok;Park Dong-Jin;Kim Chang-Ho
    • Tribology and Lubricants
    • /
    • v.21 no.3
    • /
    • pp.114-121
    • /
    • 2005
  • As fuel cell system is environmental friendly generator, its performance depends on its air supply system. Because, fuel cell stack generates electrical energy by electron and the electron is generated by reacting between air and hydrogen. So, more and more compressed air is supplied, more and more the energy can be obtained. In this study, turbo-expander supported by air foil bearing is introduced as the air supply system used by fuel cell systems. The turbo-expander is a turbo machine which operates at high speed, so air foil bearings suit its purpose for the bearing elements. Analysis for confirming the stability and endurance is conducted. Based on FDM and Newton-Raphson method, characteristics of air foil bearing, dynamic coefficients, pressure field and load capacity, are obtained. Using the characteristics of air foil bearing, the rotordynamic analysis is performed by finite element method. The analysis (stability analysis and critical speed map) shows that turbo-expander is stability at running speed. After the analysis, the test process and results are presented. The goals of test are running up to 90,000 RPM, flow rate of 150 $m^3/h$ and pressure ratio of 1.15. The test results show that the aerodynamic performance and stability of turbo-expander are satisfied to the primary goals.

Electroconductive Graphene-Combined Polycaprolactone Electrospun Films for Biological Applications (생체적 적용을 위한 전기전도성을 갖는 그래핀과 폴리카프로락톤 복합물질 전기방사 섬유형 필름)

  • Oh, Jun-Sung;Lee, Eun-Jung
    • Korean Journal of Materials Research
    • /
    • v.31 no.5
    • /
    • pp.278-285
    • /
    • 2021
  • This study produces electroconductive polycaprolactone (PCL)-based film with different amounts of graphene (G) through electrospinning, and the characteristics of the produced G/PCL composites are investigated. The G/PCL results are analyzed by comparing them with those obtained using pure PCL electrospun film as a control. The morphology of electrospun material is analyzed through scanning electron microscopy and transmission electron microscopy. Mechanical and electrical properties are also evaluated. Composites containing 1 % graphene have the highest elongation rate, and 5 % samples have the highest strength and elasticity. Graphene contents > 25 % show electro-conductivity, which level improves with increase of graphene content. Biological characteristics of G/PCL composites are assessed through behavioral analysis of neural cell attachment and proliferation. Cell experiments reveal that compositions < 50 % show slightly reduced cell viability. Moreover, graphene combinations facilitated cell proliferation compared to pure PCL. These results confirm that a 25 % G/PCL composition is best for application to systems that introduce external stimuli such as electric fields and electrodes to lead to synergistic efficiency of tissue regeneration.