• Title/Summary/Keyword: cdk

Search Result 343, Processing Time 0.027 seconds

Anti-cancer Effect of Apigenin on Human Breast Carcinoma MDA-MB-231 through Cell Cycle Arrest and Apoptosis

  • Lee, Hwan Hee;Cho, Hyosun
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.1
    • /
    • pp.34-42
    • /
    • 2019
  • Apigenin, a common natural product that is found in many plants and vegetables, has been reported to have many biological activities, including antioxidative, anti-inflammatory, and anticancer effects. The triple-negative breast carcinoma cell line MDA-MB-231 is known to be highly invasive and resistant to chemotherapy. In this study, we investigated the anticancer effect of apigenin on human MDA-MB-231 cells. First, the cytotoxicity of apigenin toward MDA-MB-231 cells was analyzed by MTT assay. Then, the cell cycle and apoptotic effects of apigenin were examined, and the molecular mechanism underlying its anticancer activity was explored. Apigenin inhibited the growth of the cells in a dose-dependent manner, correlating with the cell cycle arrest at the G2-M phase as well as an increase of early apoptosis. The cell-cycle inhibitory effect was highly associated with the increased expression of p21 and decreased expression of CDK6, cyclin D1, and cyclin B1. The induction of apoptosis by apigenin was associated with the upregulated expression of cleaved PARP and cleaved caspase-3, -7, and -9.

The Inhibitory Effect of NLRP3 Deficiency in Hepatocellular Carcinoma SK-Hep1 Cells

  • Choi, Wonhyeok;Cho, Hyosun
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.4
    • /
    • pp.594-602
    • /
    • 2021
  • The NLRP3 (nucleotide-binding domain, leucine-rich repeat family pyrin domain containing 3) inflammasome plays an important role in the initiation of inflammatory responses, through the recognition of pathogen-associated molecular patterns and tumor progression, including tumor growth and metastasis. In this study, we examined the effects of defective NLRP3 on the growth, migration, and invasiveness of hepatocellular carcinoma (HCC) SK-Hep1 cell. First, HCC SK-Hep1 cells were transfected with human NLRP3 targeting LentiCRISPRv2 vector using the CRISPR-Cas9 system, and NLRP3 deficiency was confirmed by RT-qPCR and western blotting. NLRP3 deficient SK-Hep1 cells showed delayed cell growth and decreased protein expression of PI3K, p-AKT, and pNF-κB when compared to NLRP3 complete SK-Hep1 cells. In addition, NLRP3 deficiency arrested the cell cycle at G1 phase through an increase in p21 and a reduction in CDK6. NLRP3 deficient SK-Hep1 cells also showed significantly delayed cell migration, invasion, and wound healing. The expression of epithelial-mesenchymal transition signaling molecules, such as N-cadherin and MMP-9, was found to be dramatically decreased in NLRP3 deficient SK-Hep1 cells compared to NLRP3 complete SK-Hep1 cells.

CKD-581 Downregulates Wnt/β-Catenin Pathway by DACT3 Induction in Hematologic Malignancy

  • Kim, Soo Jin;Kim, Suntae;Choi, Yong June;Kim, U Ji;Kang, Keon Wook
    • Biomolecules & Therapeutics
    • /
    • v.30 no.5
    • /
    • pp.435-446
    • /
    • 2022
  • The present study evaluated the anti-cancer activity of histone deacetylase (HDAC)-inhibiting CKD-581 in multiple myeloma (MM) and its pharmacological mechanisms. CKD-581 potently inhibited a broad spectrum of HDAC isozymes. It concentration-dependently inhibited proliferation of hematologic cancer cells including MM (MM.1S and RPMI8226) and T cell lymphoma (HH and MJ). It increased the expression of the dishevelled binding antagonist of β-catenin 3 (DACT3) in T cell lymphoma and MM cells, and decreased the expression of c-Myc and β-catenin in MM cells. Additionally, it enhanced phosphorylated p53, p21, cleaved caspase-3 and the subG1 population, and reversely, downregulated cyclin D1, CDK4 and the anti-apoptotic BCL-2 family. Finally, administration of CKD-581 exerted a significant anti-cancer activity in MM.1S-implanted xenografts. Overall, CKD-581 shows anticancer activity via inhibition of the Wnt/β-catenin signaling pathway in hematologic malignancies. This finding is evidence of the therapeutic potential and rationale of CKD-581 for treatment of MM.

The Study of anti-cancer mechanism with Cobrotoxin on Human prostatic cancer cell line(PC-3) (전립선 암세포에 대한 Cobrotoxin의 항암(抗癌) 기전(機轉) 연구(硏究))

  • Chae, Sang-jin;Song, Ho-seup
    • Journal of Acupuncture Research
    • /
    • v.22 no.3
    • /
    • pp.169-183
    • /
    • 2005
  • Objective : The purpose of this study was to investigate the anti-caner effect of cobrotoxin on the prostatic cancer cell line (PC-3).The goal of study is to ascertain whether cobrotoxin inhibits tile cell growth and cell cycle of PC-3, or the expression of relative genes and whether the regression of PC-3 cell growth is due to cell death or the expression of gene related to apoptosis. Methods : After the treatment of Pc-3 cells with cobrotoxin, we performed 형광현미경, MTT assay, Western blotting, Flow cytometry, PAGE electrophoresis and Surface plasmon resonance analysis to identify the cell viability, cell death, apoptosis, the changes of cell cycle and the related protein, Adk, MAP kinase. Results : 1. Compared with normal cell, the inhibition of cell growth reduced in proportion with the dose of cobrotoxin(0-16nM) in PC-3. 2. Cell viabilities of 0.1, 1, 4nM cobrotoxin treatment were decreased and those of 8, 16nM were decreased significantly. 3. S phase of cell cycle was decreased at the group of 1, 2, 4, 8, 16nM cobrotoxin, but M phase was increased at 0.1, 1, 2, 4, 8, 16nM cobrotoxin. 4. Cox-2 expression after cobrotoxin was peaked at 12hours and was decreased significantly after 6, 12, 24 hours. 5. The expression of Cdk4 was decreased dose-dependently at 1, 2, 4, 8nM cobrotoxin and was decreased siginificantly at 4, 8nM Cyclin D1 was decreased at 1, 2, 4, 8nM and Cycline E was not changed. Cycline B was decreased at 1, 2, 4, 8nM dose-dependently and was decreased siginificanlty at 2, 4, 8nM. 6. The expression of Akt was decreased at 1, 2, 4, 8nM dose-dependently and was decreased significantly at 2, 4, 8nM. 7. ERK was increased at 1, 2nM and decreased at 4, 8nM, p-ERK was increased at 1, 2, 4 nM, but decreased at 8nM. JNK and p-JNK were increased at 1, 4, 8 nM. p38 was increased at 2nM p-p38 was increased at lnM but decreased significantly at 2, 4, 8nM. 8. The nucli of normal cells were stained round and homogenous in DAPI staining, but those of PC-3 were stained condense and splitted. Apoptosis was increased dose-dependently at 2, 4, 8, 16nM and increased significantly at 2, 4, 8, 16nM. 9. Bax wasn`t changed at 1, 2, 4, 8nM and Bcl-2 was decreased significantly at 1, 2, 4, 8nM. Caspase 3 and 9 weren`t changed at 1, 2, 4nM but were decreased significantly at 8nM. Conclusions : These results indicate that cobrotoxin inhibits the growth of prostate Cancer cells, has anti-cancer effects by inducing apoptosis.

  • PDF

Involvement of TGF-β1 Signaling in Cardiomyocyte Differentiation from P19CL6 Cells

  • Lim, Joong-Yeon;Kim, Won Ho;Kim, Joon;Park, Sang Ick
    • Molecules and Cells
    • /
    • v.24 no.3
    • /
    • pp.431-436
    • /
    • 2007
  • Stem cell-based therapy is being considered as an alternative treatment for cardiomyopathy. Hence understanding the basic molecular mechanisms of cardiomyocyte differentiation is important. Besides BMP or Wnt family proteins, $TGF-{\beta}$ family members are thought to play a role in cardiac development and differentiation. Although $TGF-{\beta}$ has been reported to induce cardiac differentiation in embryonic stem cells, the differential role of $TGF-{\beta}$ isoforms has not been elucidated. In this study, employing the DMSO-induced cardiomyocyte differentiation system using P19CL6 mouse embryonic teratocarcinoma stem cells, we investigated the $TGF-{\beta}$-induced signaling pathway in cardiomyocyte differentiation. $TGF-{\beta}1$, but not the other two isoforms of $TGF-{\beta}$, was induced at the mRNA and protein level at an early stage of differentiation, and Smad2 phosphorylation increased in parallel with $TGF-{\beta}1$ induction. Inhibition of $TGF-{\beta}1$ activity with $TGF-{\beta}1$-specific neutralizing antibody reduced cell cycle arrest as well as expression of the CDK inhibitor $p21^{WAF1}$. The antibody also inhibited induction of the cardiac transcription factor Nkx2.5. Taken together, these results suggest that $TGF-{\beta}1$ is involved in cardiomyocyte differentiation by regulating cell cycle progression and cardiac gene expression in an autocrine or paracrine manner.

The Hair Growth Effects of Wheat Bran (밀기울의 모발 성장 효과)

  • Kang, Jung-Il;Moon, Jungsun;Kim, Eun-Ji;Lee, Young-Ki;Koh, Young-Sang;Yoo, Eun-Sook;Kang, Hee-Kyoung;Yim, Dongsool
    • Korean Journal of Pharmacognosy
    • /
    • v.44 no.4
    • /
    • pp.384-390
    • /
    • 2013
  • This study was conducted to evaluate the effect of wheat bran on the promotion of hair growth. When rat vibrissa follicles were treated with n-hexane fraction of wheat bran, the hair-fiber lengths of the vibrissa follicles significantly increased. Moreover, n-hexane fraction of wheat bran was found to significantly induce the telogen-anagen transition in C57BL/6 mice. The fraction increased the proliferation of immortalized vibrissa dermal papilla cells (DPCs) in a dose dependent manner. To elucidate the molecular mechanisms in relation to proliferation of DPCs by the fraction of wheat bran, we examined the expression of cell cycle proteins and wnt/${\beta}$-catenin signaling components. Western blot analysis revealed that the proliferation of DPC by n-hexane fraction of wheat bran was accompanied by increased the level of cyclin D1, cyclin E, phospho-CDK2 and phospho-pRB. In addition, the fraction of wheat bran increased the level of phospho(ser552)-${\beta}$-catenin, phospho(ser675)-${\beta}$-catenin and phospho(ser9)-GSK$3{\beta}$. These results suggest that the hair growing potential of wheat bran mediated by proliferation of DPCs via the regulation of cell cycle proteins and Wnt/${\beta}$-catenin signaling.

Induction of G2/M Cell Cycle Arrest by Glutamine Deprivation in Human Prostate Carcinoma PC3 Cells (글루타민 결핍에 의한 PC3 인체 전립선 암세포의 G2/M 세포주기 억제 유발)

  • Shin, Dong Yeok;Choi, Sung Hyun;Park, Dong Il;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.23 no.6
    • /
    • pp.832-837
    • /
    • 2013
  • In this study, it was investigated the possible mechanisms by which glutamine deprivation exerts its anti-proliferative action in cultured human prostate carcinoma PC3 cells. Glutamine deprivation resulted in inhibition of growth and G2/M arrest of the cell cycle in a time-dependent manner without apoptosis induction, as determined by MTT assay, DAPI staining and flow cytometry analyses. The induction of G2/M arrest by glutamine deprivation was associated with the inhibition of expression of Cdc2, cyclin A and cyclin B1, and up-regulation of the expression of cyclin-dependent kinase (Cdk) inhibitor p21(WAF1/CIP1) in both transcriptional and translational levels. Moreover, glutamine deprivation increased the phosphorylation of checkpoint kinase (Chk)1 and Chk2; however, the levels of Cdc25C phosphorylation were decreased in response to glutamine deprivation in a time-dependent manner. Our data provide a first biochemical evidence that glutamine deprivation suppresses cell viability through G2/M phase arrest without induction of apoptosis in PC3 cells.

Herb medicine Bo-du-san induces caspase dependent apoptosis and cell cycle arrest human gastric cancer cells, SNU-1 (보두산(寶豆散)에 의한 SNU-1 세포의 Apoptosis 유도와 Cell cycle arrest)

  • Yun, Hyun-Joung;Seo, Gyo-Soo;Choi, Jae-Woo;Lee, Hyun-Woo;Heo, Sook-Kyoung;Park, Won-Hwan;Park, Sun-Dong
    • The Korea Journal of Herbology
    • /
    • v.22 no.2
    • /
    • pp.35-43
    • /
    • 2007
  • Objectives : The purpose of this study was to investigate the effect of Bo-du-san (BOS) on apoptosis in human gastric cancer cells, SNU-l cells. BOS, a drug preparation consisting of two herbs, that is, Crotonis Fructus (Strychni ignatii Semen, bodu in Korean) and Glycyrrhizae Radix (Glycyrrhizae uralensis FISCH, Gamcho in Korean). Methodss : In this study, methanol extract of BOS was examined for cytotoxic activity on human gastric cancer cells, SNU-1 cells, using XTT assay, with an IC50 value was 0.7 mg/ml and 0.3 mg/ml at 24 hrs and 48 hrs, respectively. Apoptosis induction by BDS in SNU-l cells was verified by the induction of DNA fragmentation, cleavage of poly ADP-ribose polymerase (PARP), and activation of caspase-3, -8 and -9. Inhibitors of caspase-3, -8 and -9 (Ac-DEVD-CHO, Z-IETD-FMK and Z-LEHD-FMK) efficiently blocked BOS-induced cell death of SNU-l. Resultss : BOS-induced cell death was via caspase dependent apoptosis. Moreover, treatment of BOS result in the decrease the G1/S cycle regulation proteins (cyclin D1 and E) expression and increase CDK inhibitor proteins (p21 and p27) expression, and increase apoptotic protein, p53 expression. Thus, BOS induces apoptosis in SNU-1 cells via cell cycle arrested in G1 phase. Conclusions : These results indicated that BOS has some potential for use as an anti-cancer agent.

  • PDF

The Anti-Inflammatory Effect of IH-901 in HT-29 Cells

  • Lee, Seung-Min;Kim, Ki-Nam;Kim, Yu-Ri;Kim, Hye-Won;Shim, Boo-Im;Lee, Seung-Ho;Bae, Hak-Soon;Kim, In-Kyoung;Kim, Meyoung-Kon
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.4
    • /
    • pp.254-261
    • /
    • 2007
  • 20-O-($\beta$-D-Glucopyranosyl)-20 (S)-protopanaxadiol (IH-901) is one of the major metabolites of ginsenosides from Panax ginseng, and is suggested that IH-901 has been associated with various pharmacological and physiological activities. In this study, we demonstrate that IH-901 induced anti-inflammation in HT-29 human colon adenocarcinoma cells. Our results showed that IH-901 inhibited cell proliferation of HT-29 in a time- and dose-dependent manner. We also found that IH-901 was significantly decreased expression of iNOS compared with non-treated. We observed effect of IH-901 related with inflammatory genes using by cDNA microarray. We were known that the 34 inflammatory genes such as E2F, CDK6, TNF-$\alpha$, and PKC were down-regulated. Thus, these results suggest that IH-901 may have a potential preventive factor to improving cancer induced by chronic inflammation.

Inhibitory Effect of Resveratrol on Lipopolysaccharide-induced p21 (WAF1/CIP1) and Bax Expression in Astroglioma C6 Cells (C6 신경교세포에서 lipopolysaccharide에 의한 p21 (WAF1/CIP1) 및 Bax의 발현증가에 미치는 resveratrol의 영향)

  • Kim, Young-Ae;Lim, Sun-Young;Rhee, Sook-Hee;Choi, Yung-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.124-129
    • /
    • 2005
  • Resveratrol, a phytoalexin found at high levels in grapes and in grape products such as red wine, has been reported to possess a wide range of biological and pharmacological activities including anti-oxident, anti-inflammatory, anti-mutagenic, and anti-carcinogenic effects, but its molecular mechanism is poorly understood. In this study, we examined the effects of resveratrol on lipopolysaccharide (LPS)-induced growth inhibitory activity and cell growth-regulatory gene products in astroglioma C6 cells to elucidate its possible mechanism for anti-cytotoxicity. It is shown that LPS induced time-dependent growth inhibition and morphological changes of C6 cells, which were recovered by pre-treatment with resveratrol. The anti-proliferative effect of LPS was associated with the induction of tumor suppressor p53 and cyclin-dependent kinase (Cdk) inhibitor p21 (WAF1/CIP1) expression assessed by RT-PCR and Western blot analysis in time-dependent manner in C6 cells. In addition, the pro-apoptotic Bax expression was also up-regulated in LPS-treated C6 cells without alteration of anti-apoptotic Bcl-2 and Bcl-XL expression. However, resveratrol significantly inhibited LPS-induced p53, p21 and Bax levels, suggesting that the modulation of p53, p21 and Bax levels could be one of the possible pathways by which resveratrol functions as anti-cytotoxic agent.